How can we guarantee a secure communication?

Dr. Takeshi Yoneda
Industrial security AG, RRI
Information Security Dept.
Information Technology R&D Center.
Mitsubishi Electric Corp.
Panel discussion on last November.

Dr. Tsutomu Matsumoto
Masue Shiba, Tutomu Yamada
Yutaka Manchu, Atsushi Kitamura
Our Goal: To identify new security requirements in future manufacturing systems of Industrie4.0
To identify new security requirements, we have to first identify and share future business use cases and their system architecture.

First target

- **Future business use cases (business needs)**
 - **Difficult!**
 - Futuristic but realistic from the view point of mega trend.

- **Future System Architecture**
 - Difficult!
 - Realistic from the view point of current technology and to-be technology.

- **Future Security Requirements**
 - Easy if the system architecture is clear

- **Security Function**
 - Not discussed yet

- **Security Implementation**
 - Not discussed yet
Operation states of each controller in factories are monitored through the Data Access Platform by External Advisors for early fault detection and recovery.

- Operation logs of Robot Controllers in each factory (ex. in German) are gathered to the platform in the 3rd country.
- External Adversary in Japan for Robot Cont. get the data of them from the platform.
- If a EA predicts faults, it sends the alarm to the corresponding ERP.
- The ERP contacts with Production scheduler and determine the production schedule and maintenance schedule.
Security requirements for the architecture

“Global”, “dynamic” and “horizontal integration” could be the key to identify I4.0 specific security requirements.

System/network

- In order to adapt dynamic change of entities which need access to the system and network, automatic access control change mechanism should be introduced.

Components

- Unique IDs are assigned for unified global access and identification.

Etc. (data)

- Personal information should be protected for complying with privacy regulation.
Q1. How can we ensure consistent and secure handling of data and information in a multi-peer value creation network?

A1. We should share security guidelines and standards with global harmonization. Especially, we should share

- security frameworks.
- business use cases to identify domain specific security requirements/countermeasures.
Security framework

We should link our security frame of security requirements/measure to widely used framework to globally harmonize.

<table>
<thead>
<tr>
<th>Threats</th>
<th>Security requirements</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>For Example</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-NIST Cyber security framework</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ISO 27001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C:Confidentiality, I:Integrity, A:Avalability
Business Use case

Business use cases are important to draw knowledge from specialist belonging to different business domains and to focus on common topic.

Sample Use case: Manufactures determine suppliers which could provide parts assembled to products which satisfy customer need

Discussion on trustworthiness:
Online contract triggered by customer orders would occur. In the contract not only parts spec. volume, price and due-date, but also trustworthiness of the organizations of suppliers should be agreed.
Q2. How can we determine the authenticity and trustworthiness of peers in ad hoc relationships?

A2. From the technical viewpoint, using PKI with attribute Certificates where the mutually agreed trustworthiness levels are included.

Challenges are we should agree on
- what is trustworthiness.
- to which trustworthiness is assigned.
- how many levels trustworthiness should have.
- what level of trustworthiness is enough

PKI: Public Key Infrastructure
What is trustworthiness?

Security is obviously included in trustworthiness. It seems that trustworthiness is used to judge whether they can make contract or begin transaction with a peer.

If Company A has gotten ISMS certification, he has a level of trustworthiness. The fact would be used just after authentication and before authorization in order to judge whether what kind of access privilege could be assigned to the peer.

<table>
<thead>
<tr>
<th>Threats</th>
<th>(Risk)Identify</th>
<th>Protect</th>
<th>Detect</th>
<th>Respond</th>
<th>Recover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of Confidentiality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of Integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of Availability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is trustworthiness?

After sharing how to use trustworthiness, we should expand the definition of trustworthiness including safety, privacy, resilience, reliability.

<table>
<thead>
<tr>
<th>Threats</th>
<th>(Risk)Identify</th>
<th>Protect Authentication Authorization</th>
<th>Detect</th>
<th>Respond</th>
<th>Recover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of trustworthiness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loss of security</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confidentiality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resilience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reliability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Can we put the countermeasures of safety hazards, under the same security framework? Or we should change the framework?
Q3. Which infrastructure support is needed to assure secure and reliable communication in the distributed value chain?

A3. As shown in the previous slides, an infrastructure which provides trustworthiness of peers should be provided.

Infrastructure
- Identity management
- Authentication
- Trust level provision

Who is “B”
“B” properly exists (Authentication)

Is “B” trustworthy?
Yes. “B” has a lot of security (self)certifications. Here you are.

According to the trustworthiness I decided to give “B” Level 2 access previleged
Future work

• Development and standardization of common, accepted policies for the global secure supply chain.

• Identification of the targets of trustworthiness among organization, people, system, procedure, components (e.g. parts, product, device) and data.

• Identification of the trustworthiness assurance and levels for the targets

• Development a common roadmap with joint next steps and priorities and provide input for the ongoing international standardization work
One more thing: If time allows

Mass custom production of Japanese Lunch Box

Japanese bottom up approach for identifying security requirements and countermeasure.

http://www.mitsubishielectric.co.jp/corporate/randd/laboratory/information_technology/english.html
Business Use case

- Users order what they want through internet.
- Manufacture receive a lot of orders of customized products (e.g. 10,000 pieces)
- Manufacture produce those products by collaboration with factories connected via internet. Then deliver to users on time.
System Architecture

Factory: Production scheduler, MES, Controller, Jobshop, AGV

MES: Manufacturing Execution System AGV: Automated Guided Vehicle

Production Schedule

Jobshop controller

AGV Controller

Production Command

Toward Human-centric Industries

“Connected Industries”
New vision for the future of Japanese industries

2017 Copyright Robot Revolution Initiative, All Rights Reserved.
Security Analysis -> Requirements -> Functions

Information system: Black List
Industrial Control system: Static White List
Future Factory System: Dynamic White List

1. Black List
- what hackers do to achieve their purpose.

2. Static White List
- Normal and static traffic patterns

3. Dynamic White List
- Normal and dynamic traffic patterns

Future Factory system (Mass customization)

Industrial Automation Control System

Dynamic Communication

Real-time Response
http://www.mitsubishielectric.co.jp/corporate/randd/laboratory/information_technology/english.html
Thank you!