
1

The AAS Dataspace for Everybody:
An Architecture Example for a Simple Dataspace –
purely based on the Asset Administration Shell Concepts

As of October 2023

2

In the communities around the asset administration shell,
development of AAS-based systems for collaborative data
sharing is currently a major focus.

These developments can build upon existing drafts or pub-
lished documents from both the IDTA e.V. and IEC TC65
WG24, and a lot of open-source components that have
been shared.

This document describes an architecture example based on
these building blocks. The main intentions are:

• clarify the stakeholder participating in the dataspace, their
roles and operated software components

• give guidance about the role of the different APIs
described in xyz-P2

• be a base for conversations about the implementation of
cybersecurity measures in the AAS domain

• introduce some of the terms and definitions from IEC
63278-x, by using them in an architecture example.

Please note that the architecture is a description of an
example, and not a prescription for all dataspaces using the
AAS.

The document has been developed in the “Task Force
Sichere Verwaltungsschale” of Plattform Industrie 4.0 (joint
effort between AG1 and AG3), and it has been implemented
as an open-source project “AASX server”1 for demonstration
purposes, e.g. for the DPP4.0 showcase of the ZVEI.

1 https://github.com/admin-shell-io/aasx-server

3

1.1 What is a Dataspace?

A data space (→Glossary) can be defined as a decentral-
ized data ecosystem built around commonly agreed
building blocks enabling an effective and trusted sharing
of data among participants2.

It is commonly defined, set up, and operated by a com-
munity of participants having an interest in sharing data,
but without using central services for storing this data,
thus enabling participants to maintain a certain sover-
eignty regarding their data.

The community agrees on all technical interoperability
aspects, common cybersecurity agreements to establish
trust, and the organizational and legal aspects of the
dataspace.

1.2 The AAS Dataspace for Everybody:
An Architecture Example

This document describes an architecture of a simple
dataspace which uses only the concepts of the asset
administration shell as a foundation.

As we use the AAS, and we want to provide an example
for everybody to experience, we call it (→) AAS Data-
space for Everybody (ADE).

The underlying goals are:
• demonstrate an effective exchange of information for

collaboration between participating companies
• show the relationships and interactions of the major

AAS concepts:
 − asset identification and AAS identification
 − the AAS meta-information model, submodels, and
semantic definitions

 − serializations and communication protocols
 − data sets containing information about an asset,
and the AASX package container format (AASX)

2 Source: Guidance on IoT and digital twin integrations in data spaces, ISO/IEC JTC 1/SC 41 N2335
3 https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Multilateral_Data_Sharing.html

 − AAS servers and AAS discovery/registry, including
their APIs

 − attribute based access control (ABAC)
 − mutual acceptance of data usage policies (“data
business policies”3) for data

• demonstrate data sovereignty of participating compa-
nies regarding identifiers, holding and providing of
information to other participants

• allow a decentralized infrastructure that is mainly
operated by the participating stakeholders, using
interoperable implementations that are based on a set
of agreements among all participants

• ensure a level playing field for data sharing and
exchange, reducing dominance of central players, also
ensuring low entry barriers for participants.

Essential features of ADE include
• asset identification based on IEC 61406-x, using com-

pany administrated identifiers based on internet URLs
• a modular information modelling approach based on

the asset administration shell (AAS) described in IEC
63278-x

• participant-operated AAS servers, offering http-REST
interfaces (APIs) for AAS access that allow easy integ-
ration into existing IT landscapes.

Major design goals of ADE include
• easy to understand, to implement, and to maintain
• no use of application specific or sector specific buil-

ding blocks
• a flexible approach to control access to asset data,

covering the protection of intellectual property and
trade secrets of participants.

I. What is a Dataspace?

1.4 Requirements Overview

Functional suitability F1. Allow participants to share the information for
which they are responsible

F2. Allow decentralized data storage of exchange
data at the participant that provides or uses it

Security, confidentiality and usage policies S1. Allow participant authentication, conform the
identity of participants.

S2. Allow data verification, confirm the authenticity
and integrity of the data

S3. Ensure data sovereignty: The data provider is
responsible for determining access to and use of
the data generated

S4. Ensure secure data storage and protection from
unauthorized access

S5. Logging and audit trail must be implemented to
identify cybersecurity incidents.

S6. Support mutual acceptance of data usage policies

4

1.3 Described Scenario: Client-Server Pattern

In this document, we are focusing on a client-server-
based data exchange between two participants.

The document “Multilateral data sharing in industry”4
describes multilateral data exchange (between three or
more participants) - the necessary technical interactions
can always be broken down to a 1:1 relationship bet-
ween one participant offering data access via servers and
another participant implementing access using a
client application.

This reduces the risk of a misunderstanding that data is
exchanged via a central or shared “data pool” – data
always has its home at one of the participants and is
being provided from there5.

4 https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Multilateral_Data_Sharing.html
5 In the client-server setup, data is also not “broadcasted” to several participants, although an AAS-based publish/subscribe architecture may
 implement such interaction patterns in the future; the basic principles of using APIs, authentication, authorization, and access protection
 will remain.

For a simplification of language, we will describe the
architecture from the perspective of a participant (→)
manufacturer (see stakeholders):
• The participant (→) manufacturer has an interest in

providing access to certain data (e.g. product data)
related to a specific asset (e.g. a product, component,
or a machine) that he is responsible for; the manufac-
turer is preparing the data to be shared for this asset
and makes it accessible – he is also called the (→) AAS
responsible

• another participant (→) user has an interest to access
this data for the product and has an agreement with
the manufacturer to access it.

From this perspective, the systems operated by the
manufacturer are called in this document internal sys-
tems, other systems are called external.

https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Multilateral_Data_Sharing.html

Interoperability I1. Demonstrate a dataspace architecture based on
the concepts of the AAS.

I2. Use all definitions from the asset administration
shell on data modelling, semantics, APIs, proto-
cols, file formats

Modularity and modifiability M1. Ensure flexibility to add/edit/remove partici-
pants, assets, or asset information

Accessibility A1. Ensure participation opportunities for companies
who do not have their own information system,
e.g. by asking a cloud service provider to operate
necessary components on their behalf.

5

1.5 Stakeholders

Participants

Stakeholders are actively participating in the data
exchange in the ADE are called (→) participants, examples
are
• Machine suppliers: delivering complete machines
• component suppliers: delivering components to

machine suppliers
• factory operators: users of machines (and the included

components or products)

As described above, we are generalizing the participant
roles to one (→) manufacturer who has produced an
asset and wants to make asset information accessible to
other participants, and one (→) user, who has an interest
in the asset information and is allowed to access it at the
manufacturer.

user

• easy identification of an asset, e.g. by means of an
asset identifier included in a QR code (or RFID, NFC,
or similar)

• easy access to asset information the user is allowed to
access

• clarity about the allowed data usage, either by a bila-
teral contract with the manufacturer, or community
agreed policies for all ADE participants

manufacturer

• clear description how to put together the asset
• information, and how to make it available
• control of access to asset data per participant
• protection of trade secrets and intellectual property
• regarding his product
• clarity about the allowed data usage, either by a
• bilateral contract with the manufacturer, or commu-

nity
• agreed policies for all ADE participants

6

ADE Community

An additional group of stakeholders is the group of peo-
ple and organizations involved in defining the game
rules for ADE. They may or may not be participating in
the data exchange.

We call this group (→) community, examples would be
the IDTA, and involved industry associations like VDMA
or the ZVEI.

In the end, the (→) community defines the setup and
rules for ADE, and the participants will be using it, espe-
cially:
• agreements for the technical interoperability
• cybersecurity agreements to establish the necessary

trust
• (→) data usage policies, describing what a participant

is allowed to do with received data
• all legal and organizational governance aspects of the

ADE
• if necessary, commercial agreements to cover operati-

onal cost of ADE.

II. Constraints

The structure of the document follows the arc42 template.

This section will be added in an updated version of the document.

III. System Scope and Context

The scope of ADE architecture includes:
• the participants that are involved in the data exchange
• the identity and access management system allowing

participants to trustfully identify each other, restricting,
or allowing access to data, and allowing to issue crypto-
graphic certificates for signing or encrypting data

• options to integrate with other dataspaces like Catena-X
• the method used to identify (→) assets by using an (→)

asset identifier (asset-id)
• AAS discovery and registry to find the necessary endpo-

ints to access an AAS server, e.g. based on an asset-id
• the AAS data model that is used for structuring data

related to an asset (→) (asset data)
• the data storage and data provisioning by (→) AAS servers

operated by participants (or on their behalf by a 3rd party)
• usage of standardized application programming inter-

faces (API), protocols and data formats to find and
access the AAS servers

• participant authentication, access authorization and
fine-grained access control

• offering and acceptance of data usage policies for
exchanged data

6 We assume in this architecture that these agreements are not enforced by technical means (i.e. no implementation of usage policies or similar).

• the interactions and information flows that are used
to exchange asset data.

Economic, legal, and organizational governance aspects
are not discussed here – these need to be agreed in the
community, e.g. the IDTA.

3.1 Business Context

Assuming the bilateral scenario, the information flow is
the following:
• From his internal systems, the manufacturer makes

asset data available to authorized participants by
means of an (→) AAS server.

• After authentication, and accepting the data usage
policy, the user may access asset data at the manufac-
turer by using the (→) AAS interface, an API that allows
access to asset data of one or more assets.

• The user may then use the asset data in his own sys-
tems, along usage agreements that he has with the
manufacturer6.

7

For the data exchange in ADE, participants have agreed
to use three ADE common services:
• (→) ADE authentication service allows participants to

identify each other, based on a common trust anchor.
• (→) ADE discovery/registry can translate asset-ids into

AAS server and submodel endpoints.
• (→) ADE submodel template repository is a repository

for submodel templates that participants have agreed
to use. Submodel templates are used to provide clear
unambiguous semantic definitions for all AAS instance
data to be shared.

Figure 1 gives an overview of the complete system,
showing participants, ADE common services, and the
asset.

Figure 1: ADE Overall context

ADE Overall Context with Participants

ADE Common Services

User

Manufacturer

ADE Operating
Company

ADE identity provider ADE discovery/registry
service

ADE submodel
templates repository

User

wants to access asset
information

user application

other systems

Manufacturer

AAS Server

internal systems

PLM, ERP, etc.

Asset

operates operates operates

uses integrates with

uses

operates

uses

interfaces with

produces asset and
wants to provide

information about i t

has an interest to
access asset
information

have agreed to use

have agreed to useaccesses

Legend
� participant
� system
� external_participant
� external_system
� boundary (dashed)

10

3.2 Technical Context

To access asset data at the manufacturer, the user must
follow these steps:

1. Identify the asset that he is interested in, e.g. by rea-
ding a QR code affixed on the product and thus
receiving the (→) asset identifier7 (asset-id). The
asset-id is a unique URL, used only for identification
of the asset. Typically, the user does this by reading
a 2D-code (QR code, data matrix code) on the asset
that contains the asset-ID, or he has prepared a list
of asset-IDs he is interested in.

2. Authenticate with the ADE authentication service
to receive an access token that must be used to get
access to the ADE discovery/registry and then the
manufacturer’s AAS server.

7 IEC 61406-x describes 2D-Codes (e.g. QR codes, data matrix codes) and RFID as data carriers.

3. Find the endpoint of the AAS server by accessing
the ADE discovery/registry, providing the asset-id
as a parameter.

4. Access the endpoint of the AAS server. The AAS ser-
ver allows access to the asset data of the requested
asset if the user is authorized to access it.

Please note that access to the ADE discovery/registry
service and to the AAS server must be authorized – the
authentication and authorization process is described in
chapter 4.5.

Figure 2 shows the involved components and the main
interactions.

Figure 2: Data flow for AAS discovery and AAS server access, authenti-

cation and authorization not shown

AAS Discovery using the ADE registry, AAS server access

ADE Common Services

User

Manufacturer

ADE discovery/registry
service

provides relations of

asset-IDs, AAS-IDS and AAS
server/submodel endpoints

User

wants to access asset
information from

manufacturer

user application

Manufacturer

offers access to asset
information

AAS server

uses

operates

registers asset-ID with
AAS-ID and

corresponding AAS
server endpoint

requests AAS server
endpoint for assetID

accesses endpoint of
AAS server for asset

information

Legend
� actor
� system
� external_actor
� external_system
� boundary (dashed)

11

4.1 Participants that are involved in the data
exchange

The participants that are active in ADE have already
been outlined in chapter stakeholders.

To meet the requirements on data security, authentica-
tion of participants is required before they access system
components of ADE.

4.2 Method used to identify assets: the asset-id

The AAS concept uses URIs (universal resource identifiers,
RFC 3986) to identify assets; more precisely it uses URLs
(RFC 1738), a specific form of URIs that simplifies the reso-
lution of the identifier to the final source of AAS content.

The manufacturer manages asset identification under
his own responsibility.
This choice has several advantages:
• the identifiers can be assigned without a central regis-

tration authority; except for the manufacturer domain
name which must be registered in the DNS system

• no incremental cost for each created identifier is
incurred.

As data carrier to be affixed on the product, 2D codes
(QR or data matrix) may be used, alternatively RFID of
NFC. These data carriers can be read with common rea-
ding devices, and with modern smart phones.

IEC 61406-x specify the relevant principles and restricti-
ons for the identifier and the data carrier used in ADE.

4.3 AAS servers

In ADE, storage of the asset information is implemented
in AAS servers operated by the participants (e.g., the
manufacturer of a product). The servers can also be ope-
rated by a 3rd party (e.g., a cloud service provider) on
behalf of the participant.

The AAS server holds (stores) the asset data for one or

more assets. Each individual asset-id is linked to exactly
one (→) AAS instance data set.

The AAS server offers an (→) application programming
interface (API) that can be accessed from other partici-
pants in the ADE after authentication. The API can be
accessed via a defined (→) endpoint belonging to the
AAS server. The AAS content related to one asset-id can
be accessed as a complete AAS instance data set (inclu-
ding all AAS content), or partially on submodel or sub-
model element level (see section Data Model).

The server also verifies actor’s authentication, and
enforces access authorization (see below).
The AAS server includes an asset data storage with asset
data for each asset-id. It is connected to further systems:
• to the asset itself if the asset can provide online infor-

mation like variables or parameters
• to other systems that hold information about the asset.

4.4 ADE Discovery/Registry

To find the endpoint for a given identifier, the (→) ADE
discovery/registry is used. When asked for an asset-id,
the ADE discovery/registry returns the AAS server end-
point. After that, accessing the AAS server endpoint and
its submodel endpoints, asset data can be accessed.

The ADE registry offers an application (→) programming
interface (API) that can be accessed from other partici-
pants in the ADE after authentication.

4.5 Identity and access management

Participant Authentication

To ensure a trusted data exchange between participants,
they must agree on a common way of authentication.

In the ADE, all participants agree to trust one common
trust anchor, e.g. a trust service provider with a PKI. The
ADE community may agree to use one (ore several) com-
mercially available PKI offerings.

IV. Solution Strategy

12

This trust service provider issues X.509 certificates to all
participants, which they can use as credentials to aut-
henticate.

Authentication in the ADE is implemented by using (↗
Appendix) OpenID Connect. Participants need to aut-
henticate with an OpenID Connect server, using their
X.509 certificate or other credentials the ADE commu-
nity has agreed upon8.

In return, they receive an (→) access token that they will
present when accessing systems at the manufacturer,
e.g. the AAS server. ADE uses (↗) JSON web tokens (JWT)
as access tokens.

In ADE, access is also possible without authentication – in
this case only publicly available AAS content is accessible.

Access Permissions and Access Authorization

Users may have different information requirements, and
the manufacturer controls the access to his information
- therefore different parts of the AAS content might be
restricted to certain participants.

By verifying the presented access token, both the AAS
registry and AAS server can decide which parts of the AAS
content can be accessed by the authenticated participant.

The enforcement of access permissions is completely in
the hands of the participant that is providing access to the
AAS, thus allowing data sovereignty for the AAS holder.

Figure 3 shows the activity flow for authorization.

Two layers of access authorization are useful to implement:
• access permissions that allow access to manufactu-

rer’s AAS server
• another set of access permissions that relate to the

content of each individual AAS, submodel or submo-
del element.

8 Alternative authentication methods are possible – we have demonstrated authentication via verifiable credentials and also the Eclipse Dataspace
Connector (EDC). In the end, a trusted JWT is needed for AAS server access.

Figure 3: Activities for authentication and authorization

Data Usage Policies

To achieve a trustful data exchange, the involved partici-
pants need to agree how the data may be used on the
receiving side. The participant that is offering data may
want to restrict it to a certain purpose, duration, or other
criteria, and passing on data to 3rd parties needs to be
explicitly agreed.

These agreements are documented in “data usage poli-
cies”, which are documents that contain the details
about the agreement.

User access with authentification using an access token

ADE common services

User

Manufacturer

ADE identity provider

ADE user authentication

User

wants to access a AAS

user application

AAS server

authorizes access using
access token

common trust anchor
with PKI

uses

trusts

step 1: autenticates
using credentials

step 2: delivers access
token

step 3: accesses
presenting access

token

trusts

trusts

trusts

Legend
� system
� external_person
� external_system
� boundary (dashed)

13

Data usage policies can be mutually accepted in several
ways:
• as part of a “paper contract” between participants
• as part of the authentication process with the ADE

identity provider by displaying a general data usage
policy with an “accept” button

• as part of the client/server interactions during the
data exchange.

Integrating the agreement into the client/server inter-
actions has the advantage that the policies can be speci-
fic for each data element that will be exchanged. In this
case, the mutual agreement is achieved with the follo-
wing steps:

1. Before the data exchange happens, the participant
that wants to access9 data informs the data provider
about the data it wants to access . Access policies are
also enforced for this step.

2. The data provider then sends a list of offered usage
policies for this data.

3. When finally accessing the requested data, the
receiver confirms in his request the usage policy he
has accepted. This receiver request includes the
receiver’s signature

4. The data provider can now check if an offered usage
policy was chosen, delivers the requested data along
with the accepted usage policy, and log the access
for documentation.

5. If the confirmed usage policy is not identical to one
that was offered, access is rejected.

9 An HTTP HEAD request is used to query the available access policies. The HTTP HEAD method has the same parameters as the HTTP GET method,
but the answer contains only headers (which contain the offered hashes of the usage policies), and not the requested data.

After step 4, the data is exchanged, and both parties
have an ascertainable mutual manifestation of their
agreement on the usage policy.

For the technical flow of providing and accepting usage
policies, the actual content of the usage policy docu-
ment is not relevant, participants only exchange hash
values of the agreed documents, which allows a proof of
the integrity of the document on both sides. Such usage
policy document can be e.g. a PDF, but also machine
readable, e.g. provided as JSON or other.

Please note that this process allows the technical enfor-
cement of the acceptance of a data usage policy, but the
content of the policy is not technically enforced.

14

Figure 1 has already shown the setup of participants in
ADE, and Figure 2 gave an overview about the main
involved system components.

Figure 4 gives an overview about the main building
blocks interacting in the ADE as a simplified complete
example.

Figure 4: Details of ADE building blocks and their interactions

V. Building Block View

ADE building blocks, architecture example

ADE common services

User

Manufacture r

m_AAS_serve r

ADE identit y provide r

authenticate s users , create s
access token s

ADE discovery/registr y
service

asset discover y and AAS

registr y

User

want s to access asset
information fro m

manufacture r

use r applicatio n

administrato r

AASX packag e

asset

online variables , parameter s
etc.

interna l system s

PLM, ERP etc.

API gatewa y
[provide s AAS serve r endpoints]

REST service
[handle s AAS REST API]

authenticatio n service
[fo r AAS serve r]

AAS service
[access to AAS instanc e data ,

enforc e AAS policies]

asset data storag e
[fo r each AAS: submode l content ,
AAS securit y policie s & access

permissio n rules]

authorizatio n service
[loca l serve r access policies]

asset integratio n
[integrate s dat a on the asset]

asset relate d service s
[integrate s dat a fro m othe r

interna l systems]

AASX impor t and expor t
[integratio n of AASX packages]

audi t log service
[loggin g of administrativ e
activities , dat a access an d

modification , access denials]

use s

ste p 1: authenticate s
an d recevie s access

toke n

 ste p 2: look s up
assetID , recevie s AAS

serve r endpoin t

authenticate s clien t

trust s

handle s AAS operation s

foward s authorize d AAS
querie s

update s

verfifie s authorizatio n

trust s

update s update s
imports/export s AASX

packag e ensurin g
encryptio n an d signin g

import/expor t

administrate s AAS
access policie s

administrate s serve r
access policie s

trigger s AASX
import/expor t

exchange s data _about _
th e asse t wit h othe r IT

system s

exchange s data _with _
asse t

 ste p 3: accesses AAS
serve r endpoin t

Legend
� perso n
� syste m
� containe r
� external_perso n
� external_syste m
� system boundary (rounded box, last text color)
� boundar y (dashed)
� system boundary (rounded box, last text color)
� authenticated access

15

Name Responsibility

AAS server • handle all tasks related to processing, preparing,
storing, and providing access to AAS content

API gateway • accept user’s access from user’s client app
• authenticate the user verifying the validity of the

access token presented the local authentication
service

• forward all AAS-API request to the REST-server

authentication service • confirm the accessing user’s identity by verifying
the presented access token

5.1 ADE Common Services

ADE Identity Provider

The ADE identity provider identifies the user (e.g. by
asking for registered credentials) and grants an access
token that the user application uses to access common
ADE services or AAS servers.

It is implemented using the OpenID Connect standard.

As access token, we are using JSON Web Tokens (JWT).

ADE Discovery/Registry Service

ADE discovery/registry service handles the discovery of
assets, i.e. translating an asset-id into an AAS-id and
resolving the AAS-id to a communication endpoint
where the AAS server can be accessed.

It implements the discovery interface and the registry
interface of AASSpec-Part-2-V3.

ADE registry access must be authenticated, as not all
participants are allowed to reveal all information.

5.2 Building Blocks at the User

The user wants to access AAS content based on asset-
ids, either for viewing it, or for further processing in
other systems that he is using.

The user application implements at least the following
functions:
• authenticate the user at the ADE identity provider, in

return receive an access token
• use the ADE discovery/registry to translate asset-ids

to endpoints of AAS servers;
• access the AAS server to access the asset data via the

AAS service API, accessing content of submodels as
needed

• this access must be authorized by presenting the
user’s access token to the AAS server (including the
acceptance of the data usage policy if implemented)

• present the AAS content to the user, or forward it to
other systems the user may have for further processing.

5.3 Building blocks at the Manufacturer

We are describing the details of the AAS server as an
architecture example, implementations may look diffe-
rently depending on the manufacturer’s needs.

The following table describes the responsibilities of all
components of the AAS server in figure 4.

16

authorization service • enforce server access policies: allow (or forbid) AAS
server access based on the user’s identity and AAS
server access policies

• allow the administrator to manage and store access
policies for the AAS server

REST server • handle all authorized AAS-API requests by using
the the AAS service

• implements the AAS interface and submodel regis-
try interface and submodel interface from AAS-
Spec-P2-V3

AAS service • look up AAS and its submodels in the asset data
storage

• enforce AAS access policies: allow (or forbid) AAS
instance data access according to AAS access policies

• allow the administrator to manage and store access
policies for each element in each AAS and submo-
del that the AAS server is holding

• acquire and evaluate additional attributes required
for AAS access policies (which is based on attribute
based access control, ABAC), like local time etc.

• executes CRUD operations with the asset data
storage

• interfaces with the asset integration to exchange
asset information with the asset, and update the
asset data storage accordingly

• interfaces with the asset related services to
exchange asset data with systems holding infor-
mation about the asset, and update the asset data
storage accordingly

Administrator • manage AAS server access policies with the autho-
rization service

• manage AAS access policies for each AAS instance,
by adopting these policies to the environment of
the manufacturer with the AAS service

• monitors the system by analyzing audit logs from
the audit log service

• triggers AASX package import and export when
needed, e.g. when new assets are integrated into
the manufacturer

Asset integration • allows data exchange with the asset, e.g. online
variables, parameters etc.

17

VII. Deployment and Operation View

5.4 Integration with other Dataspaces like
Catena-X

As presenting a valid JWT is the only condition for acces-
sing the AAS server, AAS servers in ADE can be integra-
ted into other dataspaces.

JWTs may also be created by other processes, e.g. the
authentication and usage policy negotiation process of
Catena-X.

The only condition: The access authentication of the
“foreign” dataspace yields a JWT which the AAS server
can validate, and the service that issues the JWT is inclu-
ded in the AAS server’s trust relationships.

The JWT may also contain additional attributes that anot-
her dataspace requires, like the BPN in Catena-X - these
additional attributes can be used inside the AAS server for
additional functionality like access authorization.

VI. Runtime View

Asset related services • allows data exchange with system that hold infor-
mation about the asset, e.g. ERP systems holding
financial information about the asset or service

Audit log service • logs administrative activities, data access and
modifications, user authentication denials

The structure of the document follows the arc42 template.

This section will be added in an updated version of the document.

The following principles for deployment should be
applied in the ADE:
• ADE common services (ADE Discovery/Registry, ADE

authentication service and ADE submodel template
repository) are operated by the ADE community, e.g.
the IDTA. The ADE community may ask a 3rd party to
operate these on its behalf.

• ADE common services should be containerized using
the technologies of the Open Container Initiative to
allow easy deployment into any cloud or on-premise
system.

• Participants are responsible for operating their own
AAS servers or ask a 3rd party to operate them on their
behalf.

18

IIX. Cross Cutting Concepts

8.1 AAS Data Model (Information Meta-Model)

All asset related content in ADE is structured along the
principles of the asset administration shell (AAS),
 described in IEC 63278-x 10.

Signing AAS content

Cryptographic signing allows the verification of integrity
and authenticity of AAS content; thus it can be proven
that the AAS content was originally provided by the par-
ticipant who signed it, and that it has not been modified.

Further sematic meanings of the signature (e.g. non-
repudiation) have not been defined, they can be added if
needed for certain use cases.

The complete AAS or selected AAS submodels can by
cryptographically signed to ensure data authenticity
(confirm the source of the data), reliability and integrity
(detection of incidental or intentional modifications).

To allow signing, the common trust anchor/PKI needs
to issue certificates suitable for signing content.

10 The current detailed description of the AAS information meta-model can be found in the specification “Details of the Asset Administration Shell -
The exchange of information between partners in the value chain of Industrie 4.0 ” published by the IDTA e.V. and Plattform Industrie 4.0.

8.2 Semantics for Submodels and Submodel
Elements

Concept dictionaries in line with IEC 61360 (IEC CDD or
ECLASS) are being used to clarify the semantic meaning
of submodels and submodel elements.

Each submodel and submodel element is tagged with
the IRDI referring to the corresponding CLASS concept
according to IEC 61360 (IEC CDD, or also ECLASS).

8.3 Exchange Protocols and Formats

For the data exchange between participants, a client-
server architecture is used.

Client applications actively query ADE services and AAS
servers.

All communication transactions are stateless.

HTTPS is being used as a secure communication protocol.

JSON is being used for HTTP payloads in queries and
responses.XML may be used for exchanging AAS content
sets for one or more specific DPPs, using the AASX for-
mat to package the information for one or several DPPs
into a single file.

19

IX. Architectural Decisions

X. Quality Requirements

9.1 Discovery and AAS Registry Services combi-
ned into one module

The AAS Registry Interface and the AAS Basic Discovery
interfaces have been integrated into one software com-
ponent, as the main purpose is determining the AAS ser-
ver endpoint for a given asset-id.

9.2 AAS interface, Submodel Registry and Sub-
model interface combined into one module

The AAS server follows the pattern described in AAS-
Spec-Part-2-V3 Figure 8, integrating AAS interface and
submodel interface into one software component.

9.3 Using ECLASS and CDD as a semantic
 dictionary

As the AAS community in the IDTA has agreed to use
ECLASS (and optionally IEC CDD) as their preferred
semantic dictionary, we have followed this preference in
the ADE.

Please note that using different semantic dictionaries
still allows to exchange data, but the interpretation of
data is not unambiguous anymore.

11.1 Cybersecurity Risks

• As each participant is responsible for the reliability of
his own systems, a total ADE reliability cannot be
assured. The ADE community should define guidelines
about expected response times etc.

• The usage of open-source SDKs and reference imple-
mentations is recommended; these can be reviewed to
confirm cybersecurity requirements.

XI. Risks and Technical Debt

The structure of the document follows the arc42 template.

This section will be added in an updated version of the document.

20

Term Definition

dataspace a decentralized data ecosystem built around com-
monly agreed building blocks enabling an effective
and trusted sharing of data among participants

AAS content The information which is contained in a digital pro-
duct passport and that is exchanged between parti-
cipants.

ADE A system concept for implementing a simple data-
space by means of the asset administration shell
concept

asset a physical entity or digital entity that has value to a
participant

Asset identifier, asset-id a unique identifier that is used to identify an asset

component a product intended to be incorporated into another
product

data carrier a linear bar code symbol, a two-dimensional symbol
or other automatic identification data capture
medium that can be read by a device

(unique) product identifier means a unique string of characters for the identifi-
cation of products that also enables a web link to the
product passport. Can be applied on model, batch, or
item level.

participant a person or organization that has an interest to
exchange asset related information in the ADE

XII. Glossary

Multiple entries in the “Term” column are synonyms,
also used to align the terms with IEC 63278-x.

21

User, AAS user application operator a participant (person or company) that has an inter-
est to access data for an asset, and has an agreement
with the manufacturer to access it

manufacturer A participant (most likely a company) that has inter-
est to share data about an asset that he is responsi-
ble for

AAS responsible human or organization having interest in an asset
and governing an Asset Administration Shell related
to one specific asset

user application software application which accesses an AAS via its
AAS interface(s) for use by humans or for automatic
processing

Asset data asset information related to one specific asset

AAS instance data set One complete set of asset information related to one
specific asset bearing one specific asset identifier

community All persons or organizations agreeing on the game
rules for the ADE

registry A software service to find the server endpoints for a
given product identifier

AAS server A software service that makes AAS content accessi-
ble for one or more assets

AAS repository An AAS server implementing the AAS Repository API

ADE authentication service A software service allowing participants to identify
each other, based on a common trust anchor

22

ADE registry A software service that can translate asset-ids into

ADE submodel template repository, a repository for submodel templates that partici-
pants have agreed to use.

Submodel templates are used to provide clear unam-
biguous semantic definitions for all AAS instance
data to be shared.

Application programming interface,
API, AAS interface

An application programming interface (API) is a way
for two or more computer programs to communi-
cate with each other. It is a type of software inter-
face, offering a service to other pieces of software.
(Source: Wikipedia)

Endpoint, communication endpoint the resource identifier (URI) of one or several
resources used as starting points

Access token an access token contains the security credentials for
a login session and identifies a user and potentially
his client application

Asset service service that is provided by the considered asset

Asset related service service that is not provided by the considered asset,
but by software service outside of the considered
asset

Data usage policy mutual agreement between participants on allowed
data usage and usage restrictions for data after
access has been granted

23

LIST OF AUTHORS
Kai Garrels (ABB STOTZ-KONTAKT GmbH), Michael Jochem (Robert Bosch GmbH), Dr. Lutz Jänicke (Phoenix Contact
GmbH & Co. KG)

THIS PUBLICATION IS A RESULT OF THE “TASK FORCE SICHERE VERWALTUNGSSCHALE” OF PLATTFORM INDUSTRIE 4.0
(JOINT EFFORT BETWEEN AG1 AND AG3).

Term Definition

OpenID Connect OpenID Connect 1.0 is a simple identity layer on top
of the OAuth 2.0 protocol. It allows Clients to verify
the identity of the End-User based on the authenti-
cation performed by an Authorization Server, as well
as to obtain basic profile information about the End-
User in an interoperable and REST-like manner.
Source: https://openid.net/connect/

JSON web token JSON Web Tokens are an open, industry standard
RFC 7519 method for representing claims securely
between two parties. https://jwt.io/

IEC 63278-x Asset administration shell A concept for building standardized interoperable
digital twins for industrial assets.

IEC 61406-1, -2 Identification Link Part 1: General Requirements

Part 2: Types/Models, Lots/Batches, Items and Cha-
racteristics

AASSpec-P2-V3 IDTA e.V., Asset Administration Shell Specification -
Part 2: API, Version 3.0

XIII. Appendix

Standards and Normative References

https://datatracker.ietf.org/doc/html/rfc7519

