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AI can be used sensibly in various areas of industrial devel-
opment, production and manufacturing. This includes 

zz AI in production planning, e. g. by sequencing

zz AI in production, e. g. for the monitoring of conditions

zz AI in process automation, e. g. for the control of robots

zz AI in quality assurance, e. g. for optical component testing

zz AI in logistics, e. g. for route-optimised processes

In order to use AI safely and successfully in industry, how-
ever, a number of requirements must be met. This includes 
understanding the goals that AI can or cannot achieve and 
knowing the influencing factors inherent in using AI systems. 

Basic aspects on this topic have already been described in a 
Plattform Industrie 4.0 paper entitled “Artificial Intelligence 
(AI) in Security Aspects of Industrie 4.0” and published at 
the Hannover Messe Industrie 2019. This publication goes 
beyond this by presenting the significance of explainability 
of AI for security aspects. The main question is how humans 
can understand the decisions of an AI system and detect 
any hidden errors in architecture, configuration, and train-
ing in order to correct them: what did the system actually 
“learn” and which influencing factors were decisive in this 
process?

Modern systems of artificial intelligence (AI) are moving 
further and further away from the notions of how biologi-
cal brains function. For example, artificial neural networks 
today recognise patterns in image, sound, text or video with 
a dramatically higher number of nested neuronal layers 
than is assumed for the human brain. In many cases, this 
results in superhuman performance characteristics in terms 

of precision and accuracy of pattern recognition. On the 
other hand, however, systems of this type can no longer be 
interpreted using human powers of explanation. The preci-
sion and the ability of humans to understand the statements 
made by an AI system are increasingly constituting a trade-
off.

This document focuses exclusively on the discussion of the 
security of procedures in the field of machine learning for 
industrial applications. In practice, they are mainly super-
vised learning algorithms in which training data are used 
to create an approximation that can produce reliable state-
ments (predictions) in industrial processes. 

In Chapter 2, basic cross-application techniques are explained 
in brief for the currently dominant field of artificial neural 
networks (ANN) in order to enable readers to understand 
industrial security problems even without a pronounced 
knowledge of AI. Chapter 3 deals with the problem of explain-
ability and gives a brief overview of today's technology. There 
are no simple solutions (yet). Chapter 4 describes the most 
important method currently used by attackers to mislead 
AI. Here, too, there are (still) no solutions to problems with-
out the pronounced expertise of specialists. However, users 
need to understand the hazard in order to assess their own 
risks. Chapter 5 provides comprehensive practical advice on 
risk minimisation in the use of AI in Industrie 4.0. The 
appendix in Chapter 7 briefly explains the basic terms of 
machine learning used in the text. 

The use of artificial intelligence can pose new security prob-
lems. At the same time, AI is also suitable in some respects 
as a basis for new types of weapons, which can by no means 
only be used against AI-based systems, but also cause a 
generally extended threat situation. This paper is intended 
for both sides and provides explanations and information 
for operators.

1. Introductory remarks
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2. Design, training and pre-trained systems
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When designing a machine learning system, essential system 
parameters are pre-determined even before training is con-
ducted. As with a traditional system, the input and output 
behaviour must be described, i.e. what are input parameters 
(syntax, representation and standardisation) and what result 
should the system deliver. It may be useful or necessary to 
apply (traditional) pre-processing steps (e.g. filtering, dis-
cretisation) to the input data. The quality of the results is 
intentionally or unintentionally influenced by preparatory 
steps of this nature. A suitable learning model for the ML 
system is then selected on this basis. In addition to neural 
networks, other models such as logistic regression (logit 
models), support vector machines, decision trees, etc. were 
and are used. At the centre of the current development and 
of this text are deep learning models with artificial neural 
networks. An essential part of the design of a neural net-
work is its inner structure, i.e. the number of inner nodes 
(neurons), the number of layers, the density of the network 
of nodes, and the transfer function used. Although these 
decisions influence the performance and robustness of an 
ML system, they are often not transparent for the future 
user. For example, little information is available about the 
models and structures on which ML functions of large 
cloud service providers are based.

With a few exceptions, all machine learning algorithms 
require so-called “training” to determine their free parame-
ters (weights of the respective approximation used). A large 
number of error corrections of these parameters are made 
on the basis of a randomly controlled initialisation in which 
the observed deviation between the “labels” (to describe the 
belonging to predefined classes) of data is compared with 
the results generated by these data. The weights are then 
changed so that this deviation is reduced. This process is 
called back propagation because, according to the rules of 
differential calculus, the derivation of the error in the result 
backwards after the weights through all neuron layers pro-
vides the direction for adjusting the weights: the negative 
gradient of the error as a function of the weights points in 
the direction of the steepest descent of the error. It is there-
fore used with a heuristically fixed increment for the entirety 
of the weights for their adjustment. Under suitable condi-
tions of the error function, this gradient descent converges 
towards a unique global minimum. Figure 1 places the 
training process in an overall context of the use of AI – 
from system design through training to real use. It also 
shows which external influencing factors are important in 
which phase. Figure 2 then tries to explain the training pro-
cess in detail.

Since modern systems, especially neural networks, have 
very large numbers of free parameters, a meaningful train-
ing process must rely on very large numbers of training 
data to determine these parameters. The well-known Alex-
Net, with which the triumphal march of CNN (convolu-
tional neural networks) in image recognition began in 2012, 
had around 65 million weights to distinguish 1,000 catego-
ries, and 1,000,000 examples with labels were available. 
According to common ideas about statistics, the examples 
obviously fall short by far. Various techniques have there-
fore been developed by which the number of examples  
can be increased (data augmentation). For example, images  
can be moved a few pixels up, down, or sideways without 
changing the content-related reference to the label. How-
ever, the question quickly arises as to where the limit for 
this multiplication lies and when the quality of the acquired 
knowledge suffers.

For each step of the gradient descent, the training data are 
bundled in so-called mini batches; the gradient is therefore 
determined for the average error and the composition of 
the batches is random (see Fig. 2). The epoch is described as 
that part of the training in which all existing data were used 
once. The process is then repeated and after each epoch, a 
success check is performed using some of the data that was 
previously separated from the training data. 

As soon as it can be seen that the accuracy determined on 
this validation data does not increase any further, the train-
ing is terminated. Stagnation of accuracy in the validation 
set is an indicator of the start of overfitting (see explanation 
in the collection of technical terms, Chapter 7) – from now 
on further training would worsen the system's ability to 
generalise the classification with respect to unknown data. 
A final check on the basis of the test data, which has also 
been split off beforehand and which the system has there-
fore never seen in the validation, concludes the training for 
the selected hyperparameters (increments, normalisations, 
fixations, etc.). Further training runs are then carried out 
with different parameter sets until an acceptable result is 
obtained.

More than ten years ago, the technique of “transfer learn-
ing” (see explanation of terms) was developed, with which 
the chronic lack of data can be remedied in many situations. 
Instead of determining all weights of an ANN from scratch, 
the weights of the lower layers of an already trained ANN 
are reused. Only the upper layers are redefined for newly 
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defined classes. Today, a very popular approach is to use 
“pre-trained” networks of this type. Transfer learning is 
much faster, since only a fraction of the weights have to be 
re-trained, and above all far fewer data are sufficient to 
achieve high hit rates in the final test.

A large number of pre-trained networks have become 
available in the open source area. Transfer learning can be 
the solution especially when it comes to recognising com-
plex content that requires complex parameter structures 
whilst only very few sample images are available. A typical 
industrial example is quality control with non-destructive 
material testing. If complex defect patterns have to be 
detected in complex workpieces, it could take decades until 

sufficient defect patterns are available to train a neural net-
work. New perspectives arise if pre-trained networks 
already exist from other projects that can be trained using 
transfer learning to recognise new classes.

The use of pre-trained networks creates risks as soon as it is 
not completely transparent what the pre-training actually 
consisted of. What has the new network already learned in 
its deep layers? What “biases” 1 are contained in these weights? 
Can the supplier who implements my ML system make 
statements about all (!) training data my network has ever 
seen? Are there any security risks with which my system 
has been infected in its “previous life” before the transfer? 
Such questions are the subject of this paper.

TrainingDesign
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PreTraining 
possibly of a subsystem

Operation, Inference

Requirements:

• Which result should the 
 ML system supply?
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• Interpretation of the result

• Compilation of several (independent) 
 results (Ensemble of sytsems)

• Derivation of decsision based on fuzzy 
 results (con�dence)

Result
• For which data representation is the ML system  
 to be trained (for example image recognition:    
 bitmaps, colour information, vector graphics)?

• Required preprocessing of the data (for example  
 edge detect, superpixel, clustering, canonisation,  
 semantic coercion, …)

• Selection of suitable AI system (for example    
 expert system/PROLOG, ANN)

• Stipulation of the structure of the ML system    
 (for example structure of a (convolutional)      
 ANN)

• Training plan

• Threat and risk analysis for the target scenario

• Augmentation of the training data to increase   
 size of the training set 

• Multiple runs with varying hyperparameters 
 to identify optimal combination of hyper-     
 parameters

Source: Plattform Industrie 4.0

Figure 1 High-level phase model

1 “A bias generally refers to distortion effects. In statistics, a bias is understood as an error within the framework of data collection and  
processing.” 
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2.1 AI applications for system protection

One of the best-known security measures to increase IT 
security in corporate networks is the intrusion detection 
system (IDS), which is applied to computer systems and 
computer networks. It can supplement firewalls and, in the 
advanced version as intrusion detection and prevention 
system (IDPS), actively and automatically prevent cyber-
attacks piece by piece. 

Three versions are offered on the market today: host-based 
(HIDS), network-based (NIDS) and hybrid (HIDS) intrusion 
detection systems. While HIDS analyses information from 
log files, kernel files and databases, NIDS is used to examine 
data packets in the network, while HIDS combines both 
principles in one tool.

A distinction must be made between two IDPS types for 
the systems mentioned: the detection of abuse versus the 
detection of an anomaly. For the detection of abuse, specific 
patterns are extracted from the modelling of an attack, against 
which the system is systematically searched. By contrast, 
anomalies are identified if the behaviour of the system 

deviates significantly from 'normal'. Therefore, a detected 
anomaly does not necessarily constitute an abuse.

IDPS, supplemented with AI functions, can be trained spe-
cifically with attack patterns, e.g. with denial of service 
attacks (DoS), but conversely also with so-called “normal 
states” in order to detect anomalies. In general, the most 
difficult problem of such procedures is the reliable detec-
tion of these normal states, especially when normal states 
can change dynamically and the appearance of new pat-
terns is normal.

Market forecasts predict that by 2020 new technologies and 
methods, such as analytics, machine learning and behaviour- 
based recognition, will be integrated into most IDPS tools 
and offered on the market.

Despite this progress in the arsenal of defensive measures, 
modern IDPS-AI tools should not be seen as a universal 
solution against cyber-attacks, especially not for the future, 
but as a new milestone in the “tortoise and the hare race” 
between more intelligent attackers and defenders.

• Random initialisation or pretrained

• Iteration with hyperparameters or �xed

• Automatic creation of a hierarchy of features

Inference
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Figure 2:  Training and pre-trained systems for image recognition. Other forms of visual perception (scene recognition, 
object recognition and localisation, and the distinction between classification and identification) are out-
lined in Chapter 7. 



2. DESIGN, TRAINING AND PRE-TRAINED SYSTEMS8

2.2 Security attacks against AI applications

zz In the context of a security analysis of systems (products, 
applications...) two questions must essentially be answered:

1. What are the potential threats?

2. How can a potential threat be averted?

Re 1):  Typically, threats are classified according to the CIA 
principle based on traditional, data-centred IT 
security according to CIA (confidentiality, integrity, 
availability). Added to this is authenticity.

Re 2):  Threats to confidentiality are classically fended off 
by encryption or access control to data (or their 
physical storage and processing systems). Availabil-
ity is secured by redundancy concepts and isolation 
from attackers. Integrity in the context of data pro-
cessing means the possible verification of an unau-
thorised modification of the data. This is done clas-
sically by cryptographically secured checksums. 
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zz Threat analyses of AI applications require an extended 
concept of integrity:

z– Data-centric “IT security” understands integrity as the 
possible proof of an unauthorised modification of 
data (see above). In the context of “industrial security”, 
the concept of integrity must be extended to the 
functionality of devices and systems: a system then 
has “integrity” if its executable functionality has not 
been changed (undetected); i.e. the system executes 
exactly those functions which are expected of it and 
are documented accordingly. The system should not 
be able to be manipulated unnoticed by third parties.

zz In the case of AI-based functions of a device or system, 
the execution of a function cannot be foreseen or 
described in the individual case, since the system is not 
“predictable” for every case in the context of its internal 
decision making. In addition to the traditional integrity 
of devices and systems, the aim is to ensure that decisions 

AI1: are unbiased,

AI2: do not exceed defined system boundaries, and

zz AI3: answer the “question” of the questioner “analo-
gously” depending on the available data. A traditional 
verification test against individual functions or features 
defined in the specifications is usually not possible or 
not effective, since it is not obvious or should not be 
specified at all “how” and on the basis of which features 
an ML system reaches a classification.

In particular, the question now arises as to how malicious 
attacks against the properties AI1-AI3 can be fended off or 
at least detected. Can traditional security methods such as 
checksums, encryption or redundancy be applied here? Are 
known mechanisms sufficient or do new methods have to 
be developed? In particular, how can the properties AI1 and 
AI3 be tested?

zz Example from “safety”: an AI-based system should behave 
within the limits of certain expectations. An autonomous 
machine/robot should not leave the safety area or should 
in principle prevent collisions with other machines or 
people. Of course, this behaviour characteristic must not 
be affected by malicious manipulation of the underlying 
AI application or input data.

zz Question: is “manipulation of input data” a threat which 
can be defended against? Are there (upstream) plausibil-
ity tests as protection mechanisms for AI applications?

zz Similar questions are known from the test of (strongly) 
nonlinear cryptographic functions with very large defi-
nition and value sets (> 2128). Despite the correct verifi-
cation of given test vectors, it may turn out later that 
there were still errors in the implementation.

There is still a need for research to solve the above-mentioned 
questions.
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3. Explainability of AI decisions
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3.1  The need for explanations through human 
argumentation

The extent to which it is necessary, conceptually meaning-
ful and technically possible to make AI decisions explaina-
ble or interpretable in the sense of a classification for human 
argumentation is a controversial topic today. In some fields 
of application, there are obvious business justifications for 
the desire for explanation: why was the production line 
brought to a standstill by an autonomous robot and who is 
to blame? Why was my credit application rejected even 
though my perceived financial status is better than aver-
age? As a rule, these are questions of guilt, liability and the 
correctness of diagnoses for which there is a desire for 
humanly comprehensible argumentation. On the other 
hand, it can be assumed that this desire will diminish and 
be replaced at least in part by greater confidence in 
machine decisions.

There will be more and more areas in which machines will 
be more precise, much faster and much more reliable. 
“Would you rather undergo heart surgery by a renowned 
professor with a mortality risk of 8 % or by a robot with a 
mortality risk of 2 %? Would it be important for you that 
the professor, in contrast to the robot in the negative case, 
could explain to your surviving dependants in an under-
standable way why the intervention failed? Moreover, in 
many science-based practices today it is perfectly normal 
to rely on statistical experience rather than rational expla-
nation, even in critical areas. Medicine and pharmacy pro-
vide numerous examples. The mechanisms of action of 
common drugs such as aspirin were only researched decades 
after their widespread use and the general testing practice 
for pharmaceuticals goes from laboratory animals via spe-
cial patient groups to “normal” medication, but not via rig-
orous explanation.

It is undisputed, however, that explainable AI (XAI) can be 
helpful when assessing what a system has actually learned 
and in fathoming whether content distortions in training 
data are reflected in decision-making behaviour. For exam-
ple, sensitivity analyses of the decision with regard to the 
pixels of input images showed that, given the remarkably 
high reliability in distinguishing between wolves and husk-
ies, a main criterion in the successful image recognition 

system was the snow in the background. Of course, the sys-
tem should not learn that a wolf-like animal on snow is 
probably a husky. The providers of the training pictures 
were certainly not aware of this feature of their training set. 
The example clearly shows, however, that training data can 
have dangerous bias properties which – intentionally or 
unintentionally - can cause technical, ethical and political 
shortcomings. Such mistakes can also be the subject of dis-
cussions in the context of the GDPR. 

3.2 Complexity of the explanation problem 

Only the new algorithms of machine learning (ML) have 
produced and created awareness for the problem of the 
diminishing explainability of AI decisions. ML solves classi-
fication problems by approximation: observations are 
approximated by a “hypothesis”. With millions of observa-
tions, mathematical functions can be calibrated (“trained”) 
with millions of parameters – this is the new quality of 
extremely complex hypotheses (e.g. in neural networks). 
While programmed decision trees or the parameters of  
linear regression and other linear models were still largely 
explainable in their man-made construction, this no longer 
applies to modern neural networks with over 20 to hundreds 
of neuron layers. People do not think in such complex argu-
mentation structures and the features that neural networks 
form in these layers have no equivalent in human pattern 
recognition. 

The problem that arises is therefore that advanced ML tech-
niques develop superhuman abilities in prediction, but at 
the same time lose explainability in human reasoning. AI 
specialists can use sophisticated analysis techniques to reveal 
why their system made which decisions from a technical 
point of view (sensitivity analyses). In this respect, neural 
networks are not “black box systems” for AI specialists. XAI 
is therefore primarily concerned with making the superior 
performance of modern ML technology available to domain- 
 specific users without AI expertise through improved explain-
ability. The as yet unclear objective on the way to context- 
sensitive AI is to determine in which form human expertise 
and reasoning might help to reduce dependence on exorbi-
tant training data sets and thus inspire learning algorithms 
that learn like biological brains with far fewer examples. 
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3.3 Research approaches

Sensitivity analyses have long existed that relate to compo-
nents of training data: which pixels in images affect classi-
fication decisions and to what extent. Since both input and 
classification are humanly understandable, such techniques 
provide information about hidden biases in training data.

The expected modularisation in ML technology represents 
an analogy to the conceptual revolution of “structured pro-
gramming” in the 1970s, when “spaghetti code” was replaced 
by software in today's sense. 

The greatest conceptual challenge remains the identification 
of explanatory features in an apparently intelligently acting 
system in humanly comprehensible conceptual images and 
argumentation. How can an argumentation of 24 levels, for 
example, be explained to people who cannot intellectually 
grasp more than 3 to 4 levels? The current approach is mainly 
to use further AI to explain AI: neural networks that explain 
to people what the intellectually superior neural networks 
meant by their statements.

3.4 Existing techniques

In principle, an attempt can be made to use complex and 
therefore also very precise systems as a black box, and to 
use simpler but more explainable systems to explain the 
predictions of the precise complex system. The simple sys-
tem uses the classifications of the complex system as labels. 
This approach is very controversial. It is often referred to  
as “global” because here the system as such, not a single 
prediction, is to be made explainable.

Other techniques focus on local events in the sense of the 
system's statements for specific classifications: “why did the 
system make this statement for this particular input?”  
Various software solutions are now available for this area, 
which are used in real projects:  

zz LIME: “Local Interpretable Model-Agnostic Explana-
tions” can be used to analyse any black box system to 
determine the importance of specific features for a given 
prediction. It is currently the most popular package.

zz “Shapley Value Explanations” are based on the game the-
ory concept of the Shapley value, which determines the 
fairest method for distributing the yield in a cooperative 
game. It is currently the most up-to-date and scientifi-
cally sound approach, but requires very high computing 
power because a large number of replacement models 
must be trained. The “SHAP” package tries to make the 
existing concepts compatible with the Shapley value 
approach by approximation with realistically possible 
computational effort. 

zz The LSTMVis project aims at describing the explainabil-
ity of neural sequence models generated by recurrent 
neural networks [1].

zz There are various other approaches and offers which can, 
however, be basically integrated into these leading 
methods.

3.5 Examples

zz AI in text analysis: recognition of individual words, their 
synonyms and the context on the basis of domain-spe-
cific knowledge for conclusions on content or intended 
statements or evaluations. Areas of application are sub-
ject-specific training and support. AI may, from a super-
ficial point of view, convey a certain semantic recogni-
tion - in fact, it is not the recognition of the meaning of 
facts that is learned, but only the contexts in which peo-
ple's words were previously used. A “higher” intelligence 
is not the basis of this field of application.

zz AI-based translation systems: mainly available online, 
they are based on learned text correlations of different 
foreign languages, which consist of existing translation 
material. If only high-quality training texts previously 
produced by qualified people (technical translators) are 
learned, AI systems can produce good quality results 
with a sufficiently broad and high-quality range of train-
ing texts. However, AI systems do not improve the qual-
ity of inferior training texts. Low quality training texts 
from “pre-training” can have a permanent negative effect 
if the text currently to be translated has not been learned 
in detail and the algorithm used delivers a “translation 
text” “under all circumstances”. A qualitative grey area 
exists for online offers. A “higher, semantic” recognition 
using AI is not the basis for these systems either.
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zz Highly automated robots in production require, among 
other things, 3-D environmental information to prevent 
collisions in production, for example. Two information 
elements must be processed very quickly by AI: a) image 
analysis of the environment, b) prediction of the motor 
movement, e.g. of the robot, of the robot arm but also of 
the workpiece. 

zz AI in intelligent automation uses all data for available 
means of production, for workpieces to be machined, for 
necessary processes, but also for quality controls, inter-
mediate storage, post-processing, etc.
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4. Attack vectors on AI or by means of AI
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AI-based systems are subject to risks that did not exist in 
earlier systems. Such risks arise in training processes with 
undocumented or humanly incomprehensible data, through 
misunderstood architecture, process or performance char-
acteristics and through other structural characteristics that 
users at least partially do not know. Information and advice 
are required so that operators do not unconsciously take 
risks. In addition, AI-based attack techniques have developed 
over the past five years, which can be particularly dangerous 
for AI-based systems, but which also challenge the entire 
industrial security discussion and require more comprehen-
sive protection concepts than those established to date.

Adversarial examples are input data that are specifically 
constructed to lead pattern recognition systems to incor-
rect classification. The system recognises something com-
pletely differently than a human observer would. How is 
this possible and what techniques are used by attackers? 
This chapter illustrates the process using the familiar and 
simple example of the Modified NIST data set (abbreviated 
MNIST data set) of handwritten digits. It was created in the 
1990s by the NIST agency to automate mail sorting in the 
USA and consists of 60,000 28X28 pixels of 8-bit greyscale 
images. Professional CNN achieve hit rates of over 99 %, 
while simple systems such as logistic regression achieve 
over 93 %. Practically all new ML concepts are tested on this 
data set because it is so easy to use and easily accessible.

The problem starts with the power of the modelling by ML: 
the images obviously lie in a 28X28 = 784-dimensional space 
of integers with values between 0 and 255. There are 256784, 
and therefore more than 101888 possible images. If it is con-
sidered that physics estimates that the visible universe has 
“only” about 1080 atoms, then it can be seen that the number 
of possible MNIST images is very (!) large. “Normal” photos 
from a digital camera span even dramatically larger spaces. 
Random compositions of pixels in MNIST images are per-
ceived by the human eye as noise where nothing is recognis-
able. Images that a human being recognises as numbers (0, 
..., 9) form only a tiny subset - with perhaps a few million 
elements, but are infinitesimally small compared with 101888.

It would therefore be obvious to search for images that a 
network trained with MNIST recognises as a number, even 
though they do not look like that to humans. For this the 
same algorithm can be used that was used to determine the 
weights of the network, but which is now applied to the 
784 pixels. In fact, a large number of noise images can be 
found to which the trained network assigns high probabili-
ties that a certain digit is involved: what noise is for humans, 

the network considers as 3, 4, 7, ... with a high degree of 
confidence. With a slight change in the target function for 
the gradient descent, for example, a search can be started 
for patterns that are interpreted as “3”, but for humans look 
like a “7”, for example. The perversion can be taken to the 
extreme and this procedure can be used to develop different 
images for each image from the MNIST test set that look 
identical to humans, but are classified by the trained network 
as any other digit with a confidence of more than 90 %.
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There are ways to fight such attacks. A very simple way is to 
switch to pure black and white pixels. The misclassification 
is caused by grey noise and is therefore largely eliminated. 
However, this only works in images that still make sense in 
this representation. This is applicable to writing, but not 
normally to photos, especially if the resolution is low and 
the content only becomes vivid through grey tones. Another 
possibility is to include the incorrectly recognised images 
with the correct labels in the training. This technology also 
works but to apply it, the adversary's examples must be 
known. However, the defender will normally not know the 
target function the attacker will use to generate his images. 
Therefore, the identified gap can only be closed after a suc-
cessful attack.

Even more dramatic is the threat scenario that arises from 
the transferability of adversarial examples between different 
ML systems [3]. An example that deceives a given system is 
very likely also capable of deceiving a completely different 
ML system. Examples that fool a particular, say, two-level 
CNN are often able to fool a CNN with more or less or dif-
ferently configured layers, and even simpler techniques, such 
as logistic regression, or very complex techniques, such as 
ResNet or Inception, are vulnerable to the same attacks. 
The attacker does not have to know the technology of his 
victim; it can be a black box for him, but he still has good 
chances of starting a successful attack. 

Adversarial examples can thus be produced in stock, so to 
speak, in order to launch targeted zero-day attacks at a given 
time. It is an extreme case of asymmetry between attacker 
and defender who cannot know the attack vectors that are 
hiding at the ready. 

Resistance and defence against adversarial examples is a task 
for ML experts, who are able to develop an individually 
adapted framework by means of suitable, very specially 
aligned system configuration and training measures, which 
demand great effort from potential attackers in order to 
develop successful attack examples. The literature on this 
subject is very extensive and complex. It is primarily a mat-
ter of creating situations for ML in special cases of applica-
tion that can guarantee resistance to adversarial examples 
in a differentiated way. A comprehensive general solution 
to the problem is still the subject of research, but this is 
already possible today for specific applications.
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5.  Security risks associated with architectures 
and applications
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Distributed industrial architectures and applications repre-
sent well known and important features of Industrie 4.0. 
However, the secure interaction of AI architectures with this 
new infrastructure is largely unexplored. Security risks, such 
as industrial espionage, sabotage and data theft, must be 
considered in reflection of the chosen AI architecture and 
intended application. AI applications in production can 
have different classifications and criteria for this, such as

zz Static versus dynamic application of AI; this refers to 
the systemic adaptation of the AI software;

zz Closed or encapsulated application with only one user 
or one application, versus open application with 
dynamic number of users or applications..

The terms “classification” and “criteria” could also include 
the term “degree of freedom” or, more generally, “complex-
ity” of the AI used. Depending on the number of degrees of 
freedom of the AI application, different threat scenarios must 
be considered, which makes this case distinction important.

Example 1: An example for a static, stationary and 
closed application is the use of a camera in the course of 
a fully automatic quality control of the surface of a metal 
moulded part before this free-form part is transported 
to the painting line. The camera examines the surface of 
the blank for possible deformations that deviate from 
the nominal shape, such as a dent or a wave that may 
have occurred during deep drawing. After painting, such 
very slight deformations would become very visible to 
the eye and the free-form part, e. g. a wing, would be dis-
carded. The AI software evaluates the camera image and 
compares it with reference images. The reference images 
have been permanently further developed through con-
stant learning. The camera and the AI software work 
separately from other production and quality steps. This 
measuring and decision circle can therefore be regarded 
as autonomous from other hardware and software in the 
production environment. Data from other camera systems 
are not required because it is used on other free-form 
surfaces, such as a vehicle door, where other target dimen-
sions exist. In contrast to human surface checking, the 
system of camera and AI software can deliver significantly 
more accurate results and can produce a consistently 
high quality. 
 
Closed or encapsulated application in this example means 
a routine activity of AI in production, which is supervised 
by a single operator. A camera, evaluation software and  
a component or workpiece with high repetition in the 
geometric dimensions characterise this application. The 
security risk for cyber-attacks aimed at industrial espio-
nage or sabotage is manageable, as the perpetrator and 
the offence can be identified very quickly.

Example 1: 
Surface 
testing   

closed

Data interconnectivity

open

st
at

icEn
vi

ro
nm

en
ta

l c
on

te
xt

   
 

dy
na

m
ic Example 2: 

Collaborative 
robots   

Example 3: 
Cross-customer

predictive
maintenance   

Example 4: 
AGVs in 

warehouses

Source: Plattform Industrie 4.0

Figure 3:  Four-quadrant representation of the degrees 
of freedom of an AI application. AI in autono-
mous application and pooling are not shown.
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Example 2: Another example of a dynamic, spatially 
expanding and open application is the interconnection 
of collaboratively cooperating robots and their control 
via a control station. This something for the future. Sev-
eral production robots in a car production constantly 
exchange environmental data almost in real time via a 
control station containing AI software. The AI is intended 
to anticipate possible collisions of very fast running 
robot arms and workpiece parts to be machined and to 
prevent them by intervening in the process sequence. In 
addition, programmers can import new production pro-
cesses into each individual robot, which in turn must be 
transferred to the AI software as a new parameter set. 
The AI is networked with many robots, each of which 
offers different production processes. The process pro-
gramming of each robot is constantly optimised by several 
operators. The measuring and decision circle can be de -
scribed as open, since the amount of production means 
involved constantly varies and therefore forms a dynamic 
factor, and the processes are constantly revised by oper-
ators and are therefore also highly dynamic.

Example 3: An example of a largely closed application  
of an AI is the post-classification of security alarms from 
a (cyber-)security application by a security expert. In 
comparison to Examples 1 and 2, it describes controlled, 
dynamic further learning of AI during operation with 
corresponding dynamic adaptation of the decision be -
haviour. In this case, the software manufacturer supplies 
test algorithms that can produce false alarms in the con-
text of the respective application environment or the 
respective company using the software. Since the individ-
ual operational environment parameters can vary greatly, 
the manufacturer cannot supply any AI parameters that 
classify the result of the test algorithm in the respective 
environmental context. Typical classifications of such 
alarms include classification according to real attack 
alarms, false alarms, false configuration alarms, company 
policy alarms, etc., which require different reactions in 
each case. Due to the post-classification of alarms by a 
security expert, many “labelled” data records are created 
during the operation of the software, which are fed directly 
to the AI for dynamic re-learning during operation, 
thereby contributing to automated classification. 

Example 3 can easily be extended to Example 1 if a qual-
ity control by an employee results in a different evaluation 
of the test result of the AI and the deviating evaluation 
can be made accessible to the AI of the test system as a 
“labelled” data record via corresponding software.

Example 4: The use of intelligent, self-navigating trans-
port platforms (Automated Guided Vehicles, AGV) in 
warehouses and distributed production landscapes, such 
as in aircraft construction, serves as a good example of 
AI applications that are both open and static in terms of 
learning behaviour. The openness results from the 
demand-oriented use of more or less participating AGVs 
in the applications. For example, a warehouse may put 
additional units into operation during the hectic Christ-
mas season in order to increase order processing capac-
ity. A further dimension of openness results from the 
diversity of the elements to be transported. Logistics 
applications with contact to external parties (e. g. goods 
packaged by customers) in particular can become acces-
sible from the outside in unexpected ways. In principle, 
the underlying intelligence of the individual transport 
platforms is not significantly modified, i.e. there is no 
further learning of the navigation system and it can 
therefore be marked as static. This is not least due to the 
requirements of functional safety, which exclude or at 
least severely restrict the modification of certified sys-
tems. Typical AI functions in this area are concentrated 
on single platform navigation and fleet management. 
However, it should not be overlooked that dynamic 
learning processes are increasingly being implemented 
at the level of fleet management. A coexistence of dynamic 
and static elements in the same application is foreseeable 
here.



5. SECURITY RISKS ASSOCIATED WITH ARCHITECTURES AND APPLICATIONS20

In the above cases, the main differences between the AI 
applications are therefore as follows.

What does this mean for a faulty or deliberate manipulation 
of AI, e. g. for the purposes of economic sabotage? AI in 
closed application can be procured, put into operation and 
controlled by a single person. In the event of sabotage, the 
perpetrator would be immediately exposed and a counter-
measure quickly initiated. In the open application, possible 
causes would first have to be investigated, such as incorrect 
programming of the robot controller, absence of an update 
of new process parameters or absence of a message that 
another robot is integrated into the process sequence. A 
possible perpetrator responsible for a case of sabotage would 
be difficult, if not impossible, to identify. The large number 
of machines and people involved and the high complexity 
would protect the saboteur from exposure.

The above question of local impact goes hand in hand with 
a further dimension, namely controllability, triggered by 
the use of AI in the cloud (i.e. data centres). Typically, AI 
applications are trained in the data centres. Thanks to the 
higher computing power available in these data centres, 
they are able to meet the performance requirements of the 
AI applications. The AI inference systems are then used in 
the edge. In exceptional cases, both processes can be per-
formed both in the data centre and in the edge (distributed 
AI), depending on the complexity requirements.

The distinction between open and closed data intercon-
nectivity also provides information on possible hazard  
situations: 

AI in static application AI in dynamic application

System properties more likely closed, compact more likely open, complex

Complexity in the AI application more likely low more likely high

Required computing power of the AI software more likely low more likely high

Participating means of production and operators who supply inputs  
for the AI software more likely few more likely many

Static application Dynamic application

Local impact in the case of sabotage more limited larger

Force of sabotage incident smaller greater

Recognisability of the situation more likely possible more likely impossible

Elimination work required after detection more likely less more likely more 

Closed system Open system

Recognisability of the attack high, probably difficult, requires strong, complex protection 
mechanisms

Effects of the attack more likely small, since proliferation is limited potentially very great, as further spread is  
difficult to prevent

Work required to eliminate the attack more likely small amount very much, correlates with the extent of  
the infestation

Table 1

Table 2

Table 3
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Difference between cloud and distributed edge  
applications

zz Intelligent networks in the industry demand very fast 
system behaviour, which cloud applications cannot 
always deliver within limited latency requirements. Low 
latency requirements are often critical for industrial 
applications such as automatic controls, coordinated 
robot motions (see Example 2), video surveillance for 
product quality testing (see Example 1), power distribu-
tion, false alarm prevention, etc.

zz The large number of assets connected to the cloud re -
quires large bandwidth for the transmission of raw data, 
and the cloud requires large computing and storage re-
sources to process this large volume of data. In addition, 
the raw data often contain sensitive information and 
attacks on this data in the cloud can also cause consider-
able damage to the companies involved.  
 
Network operators are also increasingly shifting intelli-
gence to the edge in order to optimise networks and 
reduce network congestion. Distributed edge computing 
represents a desired topology from the point of view of a 
network operator. Edge computing is a distributed open 
platform at the edge of networks, close to things and 
data sources, that integrates the capabilities of networks, 
storage and applications and also supports local infer-
ence systems.  
 
This architecture is complemented by Multi-Access Edge 
Computing (MEC), which combines elements of infor-
mation technology and telecommunications networks 
and enables network operators to open their networks 
to authorised third parties such as application develop-
ers and content providers.  
 
New AI systems from network operators optimise these 
load requirements and meet Industrie 4.0 requirements 
for agile connectivity, real-time services, data optimisa-
tion, application intelligence, security and data protection 
significantly better. 
 
In this situation, however, it is important to recognise 
the challenge and to separate the functionalities of  
AI for operation in the cloud from those for operation  
in the edge on end devices, such as smart devices. 
High-performance chipsets and edge computing plat-
forms are required to implement and execute the 
high-performance algorithms of artificial intelligence 

for inference. It is also important to support the con-
tinuum of knowledge exchange between the AI func-
tions in the edge and those in the cloud. 

Control of networks by AI

In this scenario, the training data sets for characteristics 
recognition of different network requirements are of par-
ticular importance, since the network AI is considered a 
critical infrastructure whose possible misconduct can cause 
collateral damage similar to that of autonomous systems, 
which must ultimately be assessed as trade-offs.

In all probability, the idea of using the third known algo-
rithm – namely reinforcement learning for these require-
ments – for the chaotic system states typical in networks is 
likely to fail because the trial-and-error principle is unlikely 
to be feasible in critical infrastructures. The reinforcement 
learning algorithm moves closer to the optimum step by 
step by going through a variety of iterations, combining 
proven behavioural patterns and randomly trying out new 
behaviours. 

 5.1 Security risks when using AI systems

The risk of using AI systems is basically the risk of making 
wrong decisions. The reasons for wrong decisions on the 
part of AI can have various causes. These problems, initially 
independent of security aspects, can be read in the standard 
literature on AI [4]. A relationship between these general 
problems and security aspects is discussed under the respec-
tive individual points.

The listed reasons are additionally assigned to the respective 
phases of the AI phase model in Figure 1

List of reasons:

zz AI design and training phase, unclassified relevance of 
training data: training data are often mass data, ideally 
covering the value spectrum combinations for each  
of the n parameters of these data in coarse grids, and 
labelled according to combinatorics. Particularly impor-
tant here are also demarcation data records, where the 
labelling should lead to a different assessment by AI with 
comparatively minor changes. In the above Example 1 
(surface quality control), parameters for the measurement 
of 'roughness' would have to be determined here in such 
a way that the quality control would just return the 
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value 'error-free' or would just the value 'incorrect'. Very 
often, however, insufficient attention is paid to the rele-
vance of the data to the coverage of the value spectrum. 
In this case, the value spectrum of individual parameters 
is either not completely covered or goes far beyond the 
target corridor in one direction and remains far below 
the maximum/minimum value of the desired target cor-
ridor in the other direction. 
 
In addition to the general difficulty of covering the n-di-
mensional grid of parameter values, the data can also be 
manipulated as an attack vector at the time of training, 
so that the relevance spectrum would not be covered by 
the manipulation. 
 
As a result, wrong decisions can occur for the peripheral 
areas, or even random decisions for parameter values 
that are outside those of the training data sets, during 
the runtime of AI.

zz AI training phase, false training data, generated by 
deliberate manipulation of the AI:  

z– Intentional manipulation of training data to provoke 
misconduct is referred to as poisoning. 
 
Training data determine the behaviour of the ANN;  
if the training data is manipulated, the ANN can behave 
differently than expected. With clever manipulation, 
the manipulation of the training data cannot be seen 
and also the ANN behaves apparently still as expected. 
For certain input data, however, unexpected or even 
undesired behaviour will occur.  
 
This is comparable to the behaviour of software that 
contains hidden, malicious code. The software usually 
behaves as it should and the damage is not obvious, 
but under certain conditions the malicious code be -
comes active and causes harm. The situation in the 
case of an ANN is comparable with closed source. It is 
very difficult to find the malicious code and to detect 
the malicious behaviour in time. This is because the 
source code cannot be analysed as it is not available.
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z– The occurrence of malfunctions in a deterministic 
system with several sources of error is extremely  
difficult. Under supposedly identical conditions, the 
system sometimes behaves correctly and sometimes 
incorrectly. There is no 100% correlation between 
input and abnormal behaviour. As a rule, such prob-
lems can only be found and solved by systematically 
limiting the test conditions and gradually analysing 
the system behaviour (debugging).  
 
For ANN, the analysis problem is intensified, because 
its functionality is not strictly deterministic viewed 
from the outside (e.g. wrong recognition of a digit by 
an NN due to pixel noise in digit images cannot be 
perceived by a human observer). 
 
Common implementations of ANN provide a history/
log of input data. With the help of this history, the 
behaviour of the ANN can be reproduced and analysed. 
This is used, among other things, to identify and elim-
inate the causes of the ANN’s malfunction. This mech-
anism can also be used to analyse and limit poisoning.

z– In principle, the danger of poisoning is also reduced 
by federated machine learning. The models of ANN 
trained in isolation are aggregated in a superordinate 
ANN model. The individual ANNs of the federation 
will then be replaced by the aggregated model. 
 
If one of the systems is attacked with “poisoned” 
learning data, this misconduct has little effect because 
it is superimposed by the correct models.  
 
Federated machine learning is not suitable for all 
applications of neural networks.

zz Two risk types are to be considered:

z– The AI software was manipulated in pre-training and 
thus introduced into production incorrectly;

z– The AI software is manipulated in the production by 
cyber-attacks in the decision; the cyber-attacks can  
be carried out by a single production plant or quality 
control plant, which constantly reports false data back 
to the AI and thus leads to false decisions by the AI.  

zz AI training phase, the ANN is overfitted (overfitting,  
see Basic Terms, Chapter 6): During the training of AI, 
the labelled data sets are often fed to the AI several times 
in learning iterations until the deviation during testing 
with the help of a validation data set becomes small. In 
the case of the overtrained system, i.e. too frequent 
learning iterations, AI learns the results of the labelled 
data sets more or less by heart. The evaluation result 
based on the validation data supplied which the system 
does not know from training, deteriorates because the 
system begins to lose its generalisation capability. 
Checking the learning process with validation data indi-
cates when the training should be terminated to avoid 
overfitting. If small parameter deviations occur in pro-
ductive operation compared to the rules learned by 
heart, AI can no longer generalise well enough after 
overfitting and generates wrong decisions.

zz AI training phase, the ANN is underfitted (underfitting, 
see Basic Terms, Chapter 6): The AI system has insuffi-
cient training data or the variance in their parameter 
values is too small, so that AI delivers good results in test 
data operation, but is too generalised in productive 
operation, cannot grasp the complexity of the task and 
may unilaterally classify the data sets supplied to it in 
the same way and only classifies them differently in the 
case of very large deviations from the training data.

zz AI training and operational phase, false dynamic learn-
ing: in the context of supervised machine learning, 
where learning is done dynamically by adding further 
data during the productive use of the ANN (see Example 
3: Controlled dynamic learning), a misinterpretation of 
similar situations can be permanently induced by incor-
rect assessment of a current situation (generation of 
false negatives/positives, see below). Dynamic learning is 
a complex topic that can generally only be implemented 
meaningfully through highly specialised human inter-
vention with a high level of application-related exper-
tise. The naive notion that intelligent systems continue 
to learn and improve during operation is fundamentally 
wrong. The unfiltered incorporation of the system's 
findings into a set of basic truths can lead to the loss of 
the AI system's ability to recognise.
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zz AI operating phase, changed environment compared 
to learning environment: Basic risks arise in pre-trained 
systems when AI is used in changed environments where 
situations may occur sooner or later that were not included 
in the example data during the learning phase. Generali-
sation by AI always means a complex form of interpola-
tion between known data from known situations. Events 
that are completely different from the learning environ-
ment cannot be handled by an AI system. 

The two basic types of wrong decisions are:

zz False positives: AI provides a high level of criticality when 
evaluating the criticality of a state, even though a low 
level of criticality is concerned. In the context of Exam-
ple 1 (quality inspection), AI would decide on a produc-
tion defect although this is not the case. In Example 2 
(collaborative robots), AI would detect an imminent col-
lision of the collaborative robot product entities, but  
this would not take place, and possibly provoke a corre-
sponding reaction of the system, which would not be 
necessary or in the worst case could only lead to a colli-
sion. In Example 3, (cyber-attack) alarms that are not 
alarms are detected.

zz False negatives: AI provides a low level of criticality when 
evaluating the criticality of a state, even though a high 
level of criticality is concerned. In Example 1, existing 
quality defects would not be detected. In Example 2, an 
imminent collision of the entities involved would not be 
detected or would be detected too late. In Example 3, a 
(cyber) attack would not be detected.

Both cases can be caused by the reasons listed above at the 
time of learning, or by changes in the production environ-
ment.

5.1.1  Consequential risks: loss of production and  
corresponding additional costs

The range of consequential risks due to wrong decisions on 
the part of the AI can be assumed to be arbitrary. Depending 
on the processes of a company and the subsequent reactions, 
production stoppages, faulty production or destruction of 
machines can occur. For example, if the Industrie 4.0 entity 
is automatically shut down due to a false positive and the 
number of false alarms is very high, it may be impossible to 
resume production at all.

The security risks that arise in production environments 
differ from the type of use and environment. In particular, 
a distinction must be made here between the use of static 
and dynamic AI systems, as described above. In general, the 
more open the system is and the more variable the result-
ing parameter values are, the greater the security risks with 
regard to decisions made by AI.

Note: The likelihood that such a risk will occur through 
the use of AI is not necessarily higher than through the 
testing of fixed patterns and the use of other monitoring 
mechanisms. In open systems, testing through fixed patterns 
almost completely fails, since these do not provide for 
any changes (or only those defined changes) in parameter 
values and combinations.

5.1.2 Security risks when using static AI systems

With reference to the above-mentioned reasons for wrong 
decisions, the security risks are discussed with reference to 
Example 1 and partly to Example 3.

zz AI design and training phase, unclassified relevance of 
training data: in a closed system, wrong decisions in a 
production start-up phase are detected relatively quickly 
by follow-up checks, so that in the event of any possible 
failure to cover the parameter areas (both by disregard-
ing the relevance areas and by manipulating the training 
data records), appropriate follow-up learning or new 
learning can take place. In Example 1, corresponding 
learning data records could then be added that cover or 
better describe the borderlines between 'incorrect' and 
'error-free'.

zz AI training phase, false training data generated by 
deliberate manipulation of the AI: in the case of Exam-
ple 1 and Example 3, manipulation would probably be 
performed with the intention of not recognising existing 
quality problems in order to provoke a high level of dam-
age (false negatives), which is only noticed later on. The 
corresponding consequential risks arise as described above. 

zz AI training phase, the ANN is overfitted: in the case of 
Example 1, the risk of wrong decisions by an overtrained 
system is not necessarily increased as long as the learning 
records already contained all cases that occurred. In gen-
eral, however, deviations from the learning data records 
are to be expected in productive operation, so that wrong 
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decisions can be expected the greater the variance of the 
real data records. A security risk arises especially from a 
conscious/unconscious manipulation of the operational 
environment, as the number of wrong decisions increases 
massively in both directions and productivity decreases.

zz AI training phase, the ANN is underfitted: in Example 1, 
the risk of the undertrained system is low, since this is 
immediately noticeable when commissioning an Indus-
trie 4.0 system due to the high number of wrong decisions 
and not only through conscious/unconscious manipula-
tion of the system.

zz AI training and operational phase, false dynamic learn-
ing: a security risk exists if during the supply of further 
labelled data sets, incorrectly labelled data sets are delib-
erately stored, either by an attacker from outside or by 
an internal perpetrator. The aim here would also be to 
provoke false negatives in order to detect the manipula-
tion as late as possible and thus maximise the damage. 

zz AI operating phase, changed environment compared 
to learning environment: in Example 1, the following 
changes in the environment compared to the learning 
environment could lead to both false positives and false 
negatives:

z– Modified surfaces of workpieces can lead to reflections 
which dazzle the image recognition.

z– The lighting conditions in production are not identical 
with the “learning laboratory”.

In Example 3, the operational environment differs almost 
fundamentally from the laboratory environment (company- 
specific environments), so that wrong decisions of AI or a 
fixed rule are always present. These can be massively 
reduced in the course of learning.

5.1.3 Security risks when using dynamic AI systems

The security risks discussed in this chapter are, on the one 
hand, the same as the risks associated with the use of static 
AI systems, but either additional qualities of the risks dis-
cussed are added or additional risks may arise.

With reference to the above-mentioned reasons for wrong 
decisions, the safety risks are discussed with reference to 
Example 2 (collaborative robots) and partly to Example 3.

zz AI design and training phase, unclassified relevance of 
training data: compared to closed systems, the limits of 
the various parameter values of an open system are not 
always completely pre-conceivable, the number of para-
meters and their value spectra are often larger, so that 
the coarse grids of the parameter value coverage in the 
training data are also necessarily larger. This means that 
the danger of not covering parameter value ranges in -
creases significantly in open systems. Even a conscious 
manipulation of training data is very difficult to detect 
afterwards, as it becomes even more impossible for 
humans to assess why AI has decided in a certain direc-
tion. This is also due to the huge combinatorics of values 
than is the case with closed systems.

zz AI training phase, false training data generated by  
conscious manipulation of AI: The same additional risks 
occur as with manipulative changes in the environment.

zz AI training phase, the ANN is overfitted/underfitted:  
in the case of Example 2, the risk of overtraining and 
undertraining in productive operation is low, and thus 
also the risk of an attacker exploiting these aspects. 
Overtraining and undertraining of the system would 
already be detected during test operation, because the 
dynamics of the system would already lead to false reac-
tions here, and relearning would have to be triggered 
directly.

zz AI training and operational phase, false dynamic learn-
ing: the same scenario exists as for static/closed AI systems. 

zz AI operating phase, changed environment in compari-
son to learning environment: in example 2, the environ-
ment is massively changed by the dynamics of the system 
by definition. For example, further robots are used in 
production that did not exist at the time of the pre- 
training. There is therefore a constant danger that the AI 
has not been (pre-) trained generically enough to deal with 
the new situations, i.e. the risk of collisions increases, as 
shown in this example. A security risk arises in particular 
if machine data is manipulated in the productive environ-
ment or data from non-existent machines is generated 
and infiltrated. Therefore, both a provocation of false 
positives (impending accident is detected, although it 
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does not occur) and also false negatives (real impending 
accident is not detected) can occur, depending on which 
effects the attacker is targeting. Effect 1 can be a permanent 
fault due to false alarms, which can bring the system to  
a standstill. Effect 2 can be the provocation of a very  
big accident, which is not recognised and can lead to a 
major financial damage.

5.2  Security measures when using AI/security 
measures by AI

zz The following applies to almost all technical systems: 
the volume of all possible inputs cannot be tested 
because it is too large.

zz Therefore, deterministic systems test boundary values 
and extreme values, a defined series or sequence of test 
values as well as some random inputs (monkey test). 
Since the system can be assumed to have a well-defined 
behaviour, these tests can be used to deduce the correct 
behaviour for all permitted inputs (definition set).

zz For ANN, this method does not have the same signifi-
cance since ANN react to inputs with certain probabili-
ties. These inputs usually vary solely due to the upstream 
sensor technology (e. g. the same image at different 
ambient conditions, light, temperature and noise of the 
image sensor).

zz Use only pre-trained ANN models from trusted verified 
sources and verify their integrity.

zz Use your own training data or only data from trusted 
verified sources. 

zz Check the behaviour of the ANN after each change to 
the system.

zz Regularly check the behaviour of the ANN – if possible 
also unconditionally.

zz In addition, behavioural samples can be verified by human 
employees. This is a proven strategy of very large IT  
service providers for testing and training of ANN - e. g. 
“Mechanical Turk”.

The ANN can also be used for security analysis. For this 
purpose, an ANN is trained in the “normal” behaviour of 
systems. This ANN then monitors the systems and reports 
anomalies. Successful ANN systems for the safety monitor-
ing of IoT devices have been implemented as federated 
ANN. False positives, i.e. false alarms, must be avoided as far 
as possible in security monitoring. For the analysis of false 
positives, the ANN usually requires a correlation history 
between raw data, features and AI behaviour, so that the 
traceability of AI decisions is decisive for success.



27

This paper was written with the aim and claim of explaining 
the opportunities and risks arising from the use of Artificial 
Intelligence with respect to security aspects in Industrie 4.0. 
The aim of the team of authors was to present the state of 
the art, at least in general terms, and to give advice on prac-
tical implementation. The focus was on the modern aspects 
of AI, which have only been emerging for about five years, 
and in which it has become increasingly clear how great the 
importance of the explainability of AI has become. In this 
respect, the paper goes well beyond the first publication 
published in April 2019 [5].

As soon as the basic framework of machine learning is ex-
ceeded and influences come into focus, making it apparent 
that the great achievements of ML are associated with a 
loss of explainability, the need for competent advice is con-
siderable. This paper can provide only a broad outline of 
the need for advice. However, it cannot be a substitute for 
qualified individual services. For many of the problem areas 
mentioned there are (still) no universal and at the same time 
simple answers. Further research is still necessary here. How-
ever, daily practice shows that it is possible to adequately 
address most of the problem areas referred to here. A risk 
assessment must be conducted on a case-by-case basis.

6. Concluding remarks
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Pre-trained systems are a technique to apply transfer 
learning. The layers at the upper edge of a neural network 
are removed and replaced by new layers with other classes. 
Only these new layers are trained, while the lower layers 
remain fixed. Modern deep nets, especially deep CNN  
for image recognition, build up a hierarchy of parameter 
values in their layers during their training – the auto-
matically generated features in lower layers serve to rec-
ognise edges and other basic structures. They are used in 
higher layers to construct more complex features. There-
fore, instead of redefining all weights in new training, it 
is an obvious approach to take over the lower layers of 
an already trained network and to redefine only the last 
layer(s). This process quickly achieves good results with 
comparatively little data. For example, metallic surfaces 
learned from ball bearings and crankshafts can serve as a 
basis for detecting screws that require few images of the 
respective screws.

The process of setting the free parameters of an AI system 
is called training. The distance between the estimated 
values provided by the system and the corresponding 
labels is iteratively reduced by adjusting these parame-
ters, which are called weights in neural networks. The 
gradient of this distance, as a function of the weights, 
points in the direction of the steepest ascent. In order to 
improve the weights, steps must be taken in the direction 
of the native gradient. Under suitable conditions regard-
ing the distance function, the gradient descent procedure 
converges towards zero. If a new common parameter set 
is calculated from the parameters of several AI systems, 
this is referred to as federated learning. Federated learn-
ing offers security and privacy benefits.

The assignment of training data to a class is caled label.  
In order to be able to calculate with labels, these are 
indicated in the so-called 1-hot representation. In the 
numbered classes, the label of class i is a vector that con-
tains a 1 in component i and a 0 at all others. If the result 
vector of an AI system is normalised in such a way that 
all coordinates are positive and result in a sum of 1, then 
the respective values can be regarded as probabilities 
with which an input belongs to the corresponding 
classes. A correct estimate, i.e. the highest probability for 
the actual label of an element in the test set, is called a 
hit (according to top-1 criterion). If the actual label is 
among the five highest probabilities, reference is made to 
a hit according to top-5 criteria.

Visual perception is divided into scene, image and 
object recognition. Scene recognition focuses on images 
that do not contain any dominant objects, such as a 
marketplace, a harbour or a football match. Image rec-
ognition focuses on a representation with a single clearly 
dominant object: my car, my boat, my cat. Object recog-
nition and localisation is aimed at representations that 
contain multiple elements from one or more known 
classes and mark them by framing them in a bounding 
rectangle. This could be, for example, an illustration of  
a road junction in which all pedestrians, cyclists, cars, 
buses, etc. are enclosed in labelled “bounding boxes”. 
Face recognition is a special case in which the features 
of a face are trained as independent classes and identi-
fied in a portrait with bounding boxes. It is then possible 
to make assignments to data stock from the relative posi-
tions in the portrait. Thus, in addition to the statement 
“that is a face”, a certain face or a member of a certain 
group can be identified.

In contrast to the first phase of AI (1956 to mid-1980s), 
the current focus (machine learning) is on the extraction 
of structural information from data sets with the aim of 
assigning data to terms or numerical quantities (classifi-
cation, regression), identifying hidden characteristics or 
systematics, and developing strategies to achieve defined 
goals. The most important business part of AI today con-
sists of the various variants of classification: for a previ-
ously unknown input signal from a defined spectrum 
(image, graphics, sound, word, text, video, temporal 
sequence of numerical values, ...), the AI system should 
make statements about which class of data the input sig-
nal is most likely to match. For example, what is shown 
on a 600X800 pixel RGB image? A car, a cat, a screw, a 
bump in the metal of a wing, ...? The ability to answer 
such questions accurately is acquired by AI systems 
through supervised learning. The basis for supervised 
learning is data that is provided with a label, i. e. an 
identification of the content. Starting from a division  
of the data into classes, in which all data elements per 
class carry the same label, the AI system “learns” to dis-
tinguish by the structure of an approximation function 
and to find correct assignments to the defined classes. 
Since both the learning process and the later recognition 
are pure arithmetic operations, all data must be converted 
into numbers. For example, a raster image can be repre-
sented as a matrix like a photo, whose coefficients are 
the triples of the RGB values of the colours of the pixels. 

7. Basic terms of AI  
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The labels are represented in the so-called “1-hot” rep-
resentation as vectors, which have a 1 at the respective 
number of the class corresponding to the content and 
otherwise consist only of zeros. The system can count on 
this: if it generates an output vector that contains the 
probabilities that the input pattern corresponds to the 
respective classes with their numbers, then it can be 
compared with a vector that specifies 100 % for a certain 
class and 0 % for all others. The system can then be mod-
ified so that the distance between the own estimate and 
the label from the data set (the error of the estimate) 
becomes smaller. The chain rule of the differential cal-
culus can be used to change all parameter values in the 
vector space of the weights of the error function in the 
direction of the negative gradient (gradient descent). 
This defines a way in which the error converges towards 
zero as a function of the weights in an iteration process 
and unknown labels are correctly estimated (prediction). 
The AI system does not therefore remember previously 
seen images and labels but has found a method of gen-
eralisation: it does not have to recognise the neighbour’s 
dog but it has acquired the ability to say: “that is a dog 
with a 99 % probability”.

In order to increase the amount of training data, a so- 
called augmentation is often performed: the individual 
examples are moved slightly to create additional data 
that match the same label. Rotation and the addition  
of noise are further possibilities. It is important not to 
change the relative frequencies in the data stock, other-
wise additional biases will occur.

To carry out a training run with a data record that has 
already been prepared, it is first divided into three sub-
sets: the training set (approx. 80%), the validation set and 
the test set (each approx. 10%). With stochastic order and 
grouping, all elements of the training set are used exactly 
once for the gradient descent – this is an “epoch” of 
training. After each such epoch, the average error on the 
validation set is determined. It can be observed that this 
error drops to a certain point, but then begins to rise 
again. At the same time, the error that can be detected in 
the training set continues to shrink. This means that the 
system goes on to remember the training data, but at the 
same time begins to lose the ability to generalise, i. e. to 
recognise the classes of unknown data. This state is called 
overfitting. It occurs particularly when the amount of 
data is small, but the number of parameters in the system 
is high. As soon as the error in the validation set 
increases, the training run is cancelled.

There are various heuristically selected parameters, the 
so-called “hyperparameters”, which influence the train-
ing run. The step size (“learning rate”) in the gradient 
descent and its change during iteration, the temporary 
fixation of the weights of individual neurons (“dropout”), 
the extent of periodically performed regularisations of 
weights and similar parameters influence the learning 
outcome. At the end, the errors of all determined variants 
are determined on the test set. The weights contained 
therein represent the final result of the training; the 
remaining error on the test set is the degree of precision 
achieved in the classification. It is necessary to split test 
and validation set to prevent the system from learning 
the hyperparameters. The system is only confronted with 
the test data at the very end of the process, so it is unknown 
until the end. The greater the number of hyperparame-
ters, the greater the computational effort required for 
the training runs. This results in the often astonishingly 
high effort of calculating complex networks with many 
and wide layers as well as many possible combinations 
of hyperparameters. 
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