
WHITE PAPER

Describing Capabilities of
Industrie 4.0 Components

Imprint

Publisher
Federal Ministry for
Economic Affairs and Energy (BMWi)
Public Relations
10119 Berlin
www.bmwi.de

Editorial responsibility
Geschäftsstelle Plattform Industrie 4.0
Bülowstraße 78
10783 Berlin

Design
PRpetuum GmbH, Munich

Status
November 2020

Image credits
Michael Traitov – AdobeStock (title)
danchooalex – iStock (p. 5)
Alexander Limbach – AdobeStock (p. 8)
WrightStudio – AdobeStock (p. 10)
Blue Planet Studio – AdobeStock (p. 16)

You can obtain this and other brochures from:
Federal Ministry for Economic Affairs
and Energy (BMWi)
Public Relations
Email: publikationen@bundesregierung.de
www.bmwi.de

Central ordering service:
Tel.: +49 30 182722721
Fax: +49 30 18102722721

This brochure is published as part of the public relations work
of the Federal Ministry for Economic Affairs and Energy. It is
distributed free of charge and is not intended for sale. The
distribution of this brochure at campaign events or at informa-
tion stands run by political parties is prohibited, and political
party-related information or advertising shall not be inserted
in, printed on, or affixed to this publication.

http://www.bmwi.de
mailto:publikationen@bundesregierung.de

2

Contents

1 Introduction . .3

2 Terminology . .4

3 Capability-based (Continuous) Engineering and Operation .5

 3.1 Engineering and Operation of Industrie 3.0 Systems. 5

 3.2 Capability-based (Continuous) Engineering and Operation of Industrie 4.0 Systems. 5

4 Requirements for Capability-based (Continuous) Engineering and Operation .8

5 Capability Description . .10

 5.1 The Abstraction Levels of Capability Descriptions. .10

 5.2 Formalisms for Describing Capabilities. .11

 5.3 Capability and Ontologies. .13

 5.4 Skill – a Capability Implementation. .14

6 Capability Description and Checking for Industrie 4 .0 Components . .16

 6.1 Introduction .16

 6.2 Capability Element as Description in Asset Administration Shell. .18

 6.3 Predefined Semantics for Relationship “Capability Realized By” .20

 6.4 Capability maintenance and checking based on Asset Administration Shell .21

 6.5 Skill Modelling for Industrie 4.0 Components .22

 6.6 Capability of a Robot Arm. .28

 6.7 Capability of a Drilling Machine .31

7 Conclusion and Outlook . .32

8 References .33

3

Digitalization leads to increasing amounts of data. This
huge amount of data can only be processed and used in a
productive way, if machine interpretable information with
a sufficient degree of formalism is available. This is why the
huge amount of data can only be processed and used in a
productive way if machine-interpretable information is
available. This is not only true for dynamic online data but
also for descriptions of functions, structure and features of
the technical system that are used for the industrial pro-
duction.

A promising goal is the assistance or even the automatic
processing of engineering tasks. I4.0 Components are con-
sisting out of assets and their digital twin, which is in the
concept of Industrie 4.0 the Asset Administration Shell. The
assets are the building blocks of the technical system which
can be devices, machines or plants. During engineering
technical descriptions of the asset are used to understand
and identify those assets which offer the necessary func-
tions and features for the intended task and position in the
devices, machines or plants. The Asset Administration Shell
is a standardized means for these descriptions.

1 Introduction

The Asset Administration Shell can support assistance
and engineering tasks by not only providing standard-
ized and machine interpretable data but additionally pro-
viding information about its offered functionality. This
whitepaper describes the means of capability and skill to
achieve this added value. One prerequisite is the semi-for-
mal description of these capabilities and skills. Therefore,
this paper suggests combining property descriptions with
means of ontologies.

In order to facilitate communication about capabilities in a
machine-interpretable manner it is crucial that assets shar-
ing information about capabilities speak a common lan-
guage. To this end, this whitepaper proposes an approach
that decouples the description of capabilities from the
individual assets (and Asset Administration Shells). Asset
Administration Shells from arbitrary assets can refer to this
shared model and express a request or offer of capabilities
in a way that is understood by other assets.

Resource

Capability(ies)Capability
Checking

Models (engineering,
Simulation, physical,…)

e.g., OPC UA methods,
function blocks, etc.

e.g., concept dictionaries,
ontologies, etc.

?

?

provides

Is realized viaIs specied via

implements

Product
requires

provides

produces

requires

Context can be a production
cell, which in turn is a

resource consisting of other
resources plus more

environmental information
such as placement of
resources in the cell.

Models belong to
various entities such as
resources, processes,

products, etc.

Context Capability(ies)Feasibility
Checking

Skill(s)

Process

4

Figure 1: Relationships among Various Terms

Source: Plattform Industrie 4.0

2 Terminology

The following terms are used in this document, whose relations to each other are depicted in Figure 1.

Asset: Entity which is owned by or under the custodial duties of an organization, having either a per-
ceived or actual value to the organization [Plattform]

Capability: The implementation-independent description of the function of a resource to achieve a certain
effect in the physical or virtual world.

Capability Checking: A formal procedure to assess the fulfillment of a required capability against the provided capabili-
ties of a resource

Concept Dictionary: The collection of semantic description of processes, resources and products
Context: Additional information from a relationship or an environment that can be taken into considera-

tion [Plattform]
Feasibility Checking: A formal procedure to assess the possibility to achieve the desired effect of a skill execution in a

concrete context
Function Block: A stateful functional element in a system that interacts with other elements via input and output

variables and performs a computation or an action and thus one way of realizing a skill1

Process: Entirety of procedures in a system by means of which the material, energy or information is
transformed, transported or stored [Plattform]

Product: The intermediate or final merchandise that is created as a result of a process step
Model: Coherent, sufficiently detailed abstraction of aspects within a field of application [Plattform]
Ontology: A formal, explicit specification of a shared conceptualization (i.e., an abstract model of some phe-

nomenon in the world by having identified the relevant concepts of that phenomenon) [Studer]
Resource: An asset that is used in a process to perform the procedures

Skill: The asset-dependent implementation of the function of a resource to achieve a certain effect in
the physical or virtual world

1 Please refer also to IEC 61804-2 and IEC 61499

Note: Feasibility checking and the associated concepts are out of
scope of this paper, and will be detailed in further publications.

5

3 Capability-based (Continuous)
Engineering and Operation

3.1 Engineering and Operation of Industrie 3.0
Systems

The rough practice in designing Industrie 3.0 production
systems is to start by defining the basic production con-
cept. For example, a robot must move an object from point
A to B, or a liquid is mixed, heated, stirred and filled after-
wards. Afterwards, process engineers create and document
a process for the realization of the production concept, by
defining the required capabilities and functionalities such as
the capability of grasping objects, moving, drilling, etc. This
phase still abstracts from the concrete hardware. Typically,
the objects and connections during the planning are place-
holder for future technical realizations, they are the require-
ments of them. In the next step, the appropriate resources
are selected from the vendors’ catalogs and data sheets
based on the requirements defined in the previous step.

The outcome will be a list of physical equipment such as
assembly systems, handling systems and transport systems
including the automation and IT related equipment such as
actuators, sensors, controllers, IT-infrastructure as well as
software components such as engineering tools, firmware,
libraries, SCADA, MES and ERP. The detailed planning is
the next step, which consists of developing and engineer-
ing the source code for the controllers, planning the elec-
trical, pneumatic and mechanical components and the
IT-configuration. If necessary, simulations are conducted

to ensure the feasibility of the system operations, construc-
tion plans are finalized and order lists are created. After
having real resources in place, the system is built up, e. g.,
the equipment, the IT-infrastructure, the electronic con-
nections and the automation solutions. During this process,
the automation source code is loaded, parameterized and
the internal functions are tested. Finally, the system goes
through acceptance test and the commissioning. During
the operation, errors may occur, which need to be detected
and healed by the operators.

3.2 Capability-based (Continuous) Engineering
and Operation of Industrie 4.0 Systems

Industrie 4.0 systems are to enable new use cases or improve
the efficiency of existing use cases, e.g., having lot-size-one
systems, which can produce increased variety of products
in a flexible and timely manner, or simplifying and making
commissioning and maintenance more flexible via the plug
and produce concept, etc. Naturally, the traditional way of
engineering and operating systems falls short of enabling
these.

We consider capability-based engineering and operation
of systems as the key enabler for various Industrie 4.0 sys-
tems. Here, the main goal is to design and operate systems
based on the required capabilities for each step of a pro-

3 CAPABILITY-BASED (CONTINUOUS) ENGINEERING AND OPERATION OF INDUSTRIE 4 .0 SYSTEMS6

duction process, instead of explicitly specifying actual pro-
duction resources. There are different scenarios:

The actual production process sequence is decided during
production and not in the design phase. The capability
check evaluates candidate options and the feasibility check
decides which options could actually be used. Additionally,
a permanent check of free capacities is necessary.

If there is a new or unknown variant of a product with a
known production process description it can be evaluated
which assets are able to offer the necessary capability.

For example, in a simple “Device Replacement” use case,
capability descriptions simplify the task of maintenance
operators to find devices that offer similar capabilities to
a defected device, even if the devices are not the same. In
the “Lot-Size-One” use cases, one must identify whether it
is possible to manufacture a new product by flexibly using
the current installed resources of a plant; if not, they must
identify which resources within the manufacturing system
have to be added or replaced to manufacture the new prod-
uct. In the “Plug and Produce” use case, one must be able
to plug a new Industrie 4.0 component that offers certain
capabilities within a plant, the component must be discov-
ered, parameterized and start interacting with the rest of
components within the plant.

Capability-based engineering and operation of systems can
be continuous, meaning that production systems can be
changed during their operation without (or with low) inter-
ruption of the production process.

Three elements play a major role to achieve capability-based
(continuous) engineering and operation: Process, Product,
and Resource, or the so-called PPR model. Here, resources
are aware of their own capabilities to make certain effects,
without knowing in which processes and for which prod-
ucts they will be utilized. Each process specifies the required
capabilities. The properties of processes and products, as well
as the properties of the resource itself determine whether a
resource is feasible of making the desired effects in a process.

As depicted in Figure 2, a production system that supports
capability-based (continuous) engineering and operation
has three major steps.

The following paragraphs summarize general descriptions
and define the characteristic of capability and feasibility
checking, and skill execution.

Capability Checking: In this step, the capabilities offered by
resources are matched against the requirements of the pro-
cess in which the resource is to be utilized for producing a
certain product. To this end, the capabilities (e.g. gripping,
moving, releasing) can be used as plain symbols that repre-
sent their names and relations between each other. These
definitions can be complemented by adding more detailed
properties. For example, checking whether a screwdriver
can fasten a screw torque or angle controlled, a robot arm
can perform a certain motion primitive, etc. In Industrie 3.0
systems, this step is to a large extent performed manually
by the engineers based on the data sheets of the resources,
and their understanding of the process. Nevertheless, this
can be automated if the description of the capabilities that
are offered by resources, as well as the description of the
capabilities that are required by processes are available in a
machine-readable/interpretable format, e.g. using ontologies.
If machine-readable capability descriptions exist for Indus-
trie 4.0 components, advanced techniques such as auto-
discovery via the mDNS protocol [mDNSProtocol] can be
adopted to automatically discover resources in plants based
on their provided capabilities. These are the key enablers for
advanced Industrie 4.0 use cases such as plug and produce.

Feasibility Checking: The objective of this step is to ensure
that the necessary conditions hold so that it is feasible for the
selected resource to perform its task. These conditions are de-
termined not only by the resource but also by the process and
related product as well as the context. To perform the feasi-
bility checking, the first step is to parametrize the resource
according to the requirements of the process. Afterwards,
pre-conditions to perform a task must be checked. As an ex-
ample consider a robot system moving a metal object from
point A to point B. The pre-condition is that the metal object
must already be at point A so that the robot arm can reach
it. Feasibility checking provides an assurance of some con-
fidence that the task is performed according to the require-
ments; these assurances can be checked as post-conditions.
In our example, the post-condition is that the metal object is
located at the place B. Since a process step always takes place
in a duration of time, it may be needed to ensure that certain
conditions hold over the entire duration of the process. These
conditions are named as invariants. In our example, the in-
variant is that the robot must not drop the object.

To perform feasibility checking various models as well as
contextual information may be needed as input. For exam-
ple, the simulation models or environmental models depict-
ing the location of objects in a production cell. Since the
feasibility check is performed based on models and before

3 CAPABILITY-BASED (CONTINUOUS) ENGINEERING AND OPERATION OF INDUSTRIE 4 .0 SYSTEMS 7

real execution of skills, there is always the likelihood that
unforeseen runtime conditions contradict the results of the
feasibility check.

In Industrie 3.0 systems, feasibility checking is an implicit
step in engineering. Engineers design a process in a deter-
ministic way using various tools, such as production simula-
tion tools, and ensure that the process’ goal can be achieved.
Nevertheless, the automation level of such checks can be
improved if machine-readable descriptions of required
models, processes, and resources exist. For example, formal
methods, simulation and machine learning techniques can
be used to assess the feasibility of designed processes.

Skill Execution: This step refers to the operational phase
where resources are commissioned and put into opera-
tion. For this matter, they must be parameterized or cali-
brated based on the parameters specified in the Feasibil-
ity Checking step, and the operations must be invoked on
the resources. At this step also pre-conditions, invariants
and post-conditions can be checked to detect operational
errors. For example, due to an unhandled exception the

robot cannot perform its task; consequently, violating the
required post-conditions. This means that the results of the
Skill Execution phase also influence the Feasibility Check-
ing results. If there is a feedback loop from the Skill Execu-
tion phase to the Feasibility Checking phase, such cases can
be learnt and be considered for future feasibility checks.

Extensive research has been performed in the field of
runtime verification and recovery, where dedicated
domain-specific languages and components are introduced
to existing systems to perform such extra checks [Runtime-
Verification]. Offering vendor-independent runtime veri-
fication and recovery techniques for Industrie 4.0 systems
could be considered as a topic of further research.

In systems with continuous engineering and operation,
various changes (e.g., production receipt) may be applied to
the system during its operation, which also requires adjust-
ing artifacts of prior phases such as models of the planning
phase of the engineering. Such changes trigger the three
steps of capability checking, feasibility checking, and skill
execution.

In�uences

Continuous Engineering Operation

Speci�cation-level
(dictionairies, ontologies, …)

Module-level
(engineering, simulation, physical, …)

Implementation-level
(OPC UA method call, …)

Industrie 4.0 System

PPR-based (Compositional)
Capability Checking

Capability Checking

Parametrization

Invariants Checking

Pre-conditions
Checking

Post-conditions
Checking

Feasibility Checking

Pre-conditions
Checking

Parametrization/
Calibration

Post-conditions
Checking

Ececution

Invariants Checking

Skill Execution

Figure 2: Steps in Capability-based Continuous Engineering and Operation

Source: BaSys 4.2

8

Different stakeholders in an Industrie 4.0 system have
different requirements for capability-based engineering
and operation of systems; for example:

4 Requirements for Capability-based
(Continuous) Engineering and Operation

9

REQ (1): As a Plant Engineer

I would like to engineer my plant based on capabilities of resources instead of focusing on concrete resources,

in order to reduce the cost of adjusting the engineering projects if the concrete resource changes.

Comments Interoperability and flexibility during the engineering phase are non-functional requirements, which can be
achieved if concrete resources can be abstracted away.

REQ (2): As a Resource Supplier

I would like to offer the capability description of my resources, in a standardized/agreed format,

in order to ensure that they are compatible to the engineering tools of plant engineers, and my resources are consid-
ered by plant engineers whenever my resources are suitable.

Comments Interoperability and flexibility during the engineering phase are non-functional requirements, which can be
achieved if concrete resources can be abstracted away.

REQ (3): As a Resource Supplier

I would like to offer the most specific capability description of my resources

in order to ensure that the descriptions match the queries of plant engineers for resources, which can be described in
a very specific or a very generic way.

Comments Flexibility in production line is a non-functional requirement, which can be achieved by describing the
capabilities of resources at higher levels of abstractions; for example, “material removal” and “making a
hole” are two abstract definitions of the concrete capability „drilling“

REQ (4): As a (re-) Planner

I would like to find Industrie 4.0 components in the plant, which fulfill my requested capabilities

in order to adjust/plan my production process based on the existence of certain resources.

Comments Flexibility in production line is a non-functional requirement, which can be achieved by finding relevant
resources based on their capabilities instead of specifying concrete resources.

REQ (5): As a Maintenance Operator

I would like to know whether two resources offer the same capabilities

In order to be able to replace a defected resource.

Comments Reducing maintenance and repair time to ensure continuous production is a non-functional requirement
for various use cases.

REQ (6): As a Control Component

I would like to find resources in the plant, which fulfill my requested capabilities

in order to adjust/plan my production process based on the existence of certain resources.

Comments Achieving some degree of autonomy in adjusting production process is a requirement in various use cases.

REQ(7): As a Resource

I would like to have a machine-readable description of the capabilities and configuration parameters of other resources

In order to be able to automatically configure them.

Comments Achieving some degree of autonomy in adjusting production process is a requirement in various use cases.

10

5 Capability Description

The key to enable capability-based (continuous) engi-
neering and operation is to have capability description in
machine-readable format, and in the right level of abstrac-
tion. Ideally, the capability descriptions must be standard-
ized and globally accessible, so that interoperability across
vendors can be achieved.

5.1 The Abstraction Levels of Capability
Descriptions

Capabilities can be described at various levels of abstrac-
tions, from four different dimensions [CapAbstraction]: a)
“atomic” to “composed”, b) “process-independent” to “pro-
cess-specific”, c) “product-independent” to “product-spe-
cific”, and d) “resource-independent” to “resource-specific”.

Atomic to Composed: It is possible to consistently separate
or decompose a capability into subsidiary capabilities until
they cannot be decomposed any further (in the scope of the
capability model) and are presented as an “atomic” capa-
bility [CapAbstraction]. In terms of composition, it is pos-
sible to define composed capabilities out of a set of (sub-)
capabilities. An example of a composed capability, which is
achieved by a composition of other capabilities, would be
“Pick & Place”. This capability is realized by a combination
of grip and move capabilities.

Process-independent to Process-specific: The process-
related capability description can range from a very generic
to a very specific form. For example, “Material Removal” or
“Handling” are very generic descriptions of process capa-
bilities, whereas “Making a Hole”, “Gripping”, “Drilling” and
“Magnetic Gripping” become more concrete and determine
the specific process to be used.

5 CAPABILITY DESCRIPTION 11

Resource-independent to Resource-specific: When speci-
fying process-related capabilities, there is often also an in-
direct specification in terms of possible resources. This can
be elaborated with the common example of the capability
“Drilling”, which indicates the need for a drilling machine
as a resource. The correlation of the process and the re-
sources mostly occurs if a certain level of process specifica-
tion is reached. If we take the example of “Making a Hole”,
neither the resource nor the process is detailed, but if we
go to the level of specific processes like “Drilling”, the pos-
sible resources are getting more and more restricted. It is
possible to conclude that the number of possible resourc-
es, which can execute a capability, correlates inversely pro-
portional to the abstraction level of capability descriptions.
While most of very specific capabilities correlate with cer-
tain resources, there are also specific processes that can be
executed by a broad variety of resources. An example are
capabilities, which are moving the product. This can be
value- adding capabilities like assembling different product
parts, as well as non-value-adding capabilities like materi-
al flow processes. It is possible in both cases to describe the
movement in a very specific way, but it can be executed by
a very broad variety of resources.

Product-independent to Product-specific: It would also be
possible to describe capabilities based on the product they
are producing. This, however, seems meaningful only on
a higher level of composed capabilities because an atomic
capability like “Rotating” most likely will not lead to the
production of a complete product or an intermediate prod-
uct. It is possible to consider a production line as a very
large composed capability, which technically describes the
complete production of a certain product. Again, it is pos-
sible to describe very generic capabilities, which are com-
posed out of the most likely capabilities to manufacture
a certain product category or we can specify the produc-
tion for a very specific product variant. To carry it to the
extreme, one could specify a generic “Manufacturing a Car”
capability or the specific capability of producing a certain
model of car. This heavily depends on how similar different
products of a product category are manufactured. There-
fore, there is no complete product-independent capability,
but capabilities that are either related to a concrete prod-
uct or a category of products. Likewise, this influences the
process-level capabilities, which are either defined for the
process of manufacturing a concrete product or a category
of products.

5.2 Formalisms for Describing Capabilities

Informally, describing the semantics of a concept is
describing its meaning. There can be different degrees of
formality regarding this description itself, ranging from
an informal (possibly colloquial) natural-language based
description to a highly formal, mathematical or logical
description.

Figure 3 illustrates different levels of formality for a com-
munication between two Industry 4.0 components A and B.
In order to make any communication technically possible,
a component must provide an interface for data requests,
operation invocations, means to send and receive messages,
etc. The interface (including the data structures it accepts
or provides) has a semantics that must be understood
by the user of the interface in order to make meaningful
requests/calls/etc.

The most informal semantic description is when the devel-
oper of component A talks to the developer of component
B and explains in natural (possibly colloquial) language the
semantics of the interface. In this case it is up to the devel-
oper of A to interpret the explanation of developer of B in
order to use B’s interface. This interpretation is manifested
by the source code e.g. written in C++ or Java. A higher
degree of formality is given if a commonly known and
widely accepted interface is used, such as OPC UA with its
powerful address space model, i.e., information model. In
this case a developer no longer needs to interpret the inter-
face, but only the information model that is provided by
the interface. OPC UA defines the address space model, so a
client can read and browse the address space, but the infor-
mation models themselves can be arbitrary. Logical formal
inference machines cannot be applied. So, there is still a
large scope for interpretation, and coordination between
the developers is necessary.

Using standardized information models, such as OPC UA
Companion Specifications reduces this amount of coordi-
nation. Standardization defines the vocabulary terms and
structures in the information models. However, developers
of client components that communicate with other com-
ponents that comply to such standards must still inter-
pret the standard itself in order to make use of it prop-
erly. Interpreting the standard here means again reading a
natural language document, although it is structured and
written using controlled language to be as unambiguous as
possible. Instead of referring to textually described stand-

5 CAPABILITY DESCRIPTION12

ards, the information model could define its semantics
by referring to a standardized vocabulary, such as eCl@ss
[eCl@ss] (via “HasDictionaryEntry” reference in OPC UA).

There, a formal concept hierarchy, as well as property lists
are provided, and the vocabulary is standardized. However,
interrelations between concepts are not formally described,
descriptions of concepts are still described in natural lan-
guage, and modelling flexibility and expressiveness is lim-
ited. Instead of references to catalogue properties (such as
IEC CDD or eCl@ss) with nearly no relationship between
each other and with limited formalisms, expressive for-
mal ontologies such as the Web Ontology Language (OWL)
[OWL 2] could be used to define the semantics of any con-
cepts. The semantics is then well-defined, such that algo-
rithms exist which allow for autonomous interpretation
and decision-making.

An OWL ontology is a set of axioms, where each axiom
denotes a logical relationship between some entities that
represent the domain of interest. The ontology thus defines
a formal semantics for the entities. In OWL, entities can

be classes, properties, and individuals. The logical formal-
ism used in OWL is a Description Logic, which defines
the entailment regime that is used for inferring implicit
knowledge from explicitly stated axioms. The knowledge
modeled in an ontology is defined, formal and explicit, and
thus inferences are deterministic and provable, which is an
advantage over vagueness of natural language and uncer-
tainty as in statistical models (for instance as provided by
machine learning approaches).

In addition to its logical underpinning, OWL is based on
the Resource Description Framework (RDF) in the sense
that all OWL entities are valid RDF Resources and identi-
fiers are Internationalized Resource Identifiers (IRI). This
allows for reusing and incorporating existing ontologies,
vocabularies, or other resources from the Linked Open
Data Web.

Ontologies can be provided in a modular way, where dif-
ferent modules provide different parts of the knowledge
about a domain of interest. If such modules are merged,
the resulting ontology consists of the union of the sets of

Developers need to interpret interfaces

am
ount of autonom

y

am
ount of hum

an brain

e.g. Java/C++

e.g. OPC UA

e.g. OPC UA Companies Specs

e.g. OPC UA with eCl@ss

e.g. OPC UA with OWL

Developers need to interpret information models

Developers need to interpret standards

Developers need to interpret de�nitions

Component A Component BA
PI

A
PI

Figure 3: Different Levels of Formality for Communication between two Industry 4.0 Components

Source: Plattform Industrie 4.0

5 CAPABILITY DESCRIPTION 13

axioms from the various modules. If axioms from different
modules refer to the same entities, the axiom sets comple-
ment each other.

To enable capability-based (continuous) engineering and
operation, the formal semantic description must be used
to describe capabilities, so that a client can query a compo-
nent for its capabilities via a standardized meta-model (e.g.
Asset Administration Shell [AASiD Part 1]). The capability
description itself is semantically defined by pointing to an
ontology that has formal definitions of the capability, its
relation to other capabilities (subsumption, composition,
etc.) as well as possibly other connected information.

In the context of capability description, an OWL-based
model provides the following possibilities:

1. Define or describe existing vocabulary for capabilities in
terms of entities with unique IDs (IRIs), but also define
synonyms in terms of different labels for the same entity
or equivalence axioms

2. Define hierarchies of capabilities

3. Express via ontology axioms how capabilities might be
composed of different other capabilities

4. Extend the knowledge about capabilities by multiple
ontology modules that cover different aspects of capa-
bilities, for instance, a core module defining the capabil-
ity entities and hierarchy, and a second module defining
properties of capabilities

way of representing such a generic capability knowledge
base. Depending on the ontology language, a semanti-
cally expressive formalism for describing capabilities and
relations between them can be utilized. For instance, the
Web Ontology Language (OWL) provides an axiomatic
description of ontology entities (here: capabilities) based
on Description Logics. This formal underpinning allows
for powerful reasoning on capabilities, such as capabil-
ity matching based on capability hierarchies or capability
composition.

As for hierarchical capability models, let C’ be a sub-
capability of C. A capability requester asking for C can be
matched with a capability provider offering capability C’
since the semantics of “sub-capability” ensures that C’ also
entails C. In an example, let “MoveFlangeTo6DPositionOn-
LinearTrajectory” be a sub-capability of “MoveFlangeTo6D-
PositionOnPath”, which itself is a sub-capability of “Move-
FlangeTo6DPosition”. A requester asking for a component
providing “MoveFlangeTo6DPosition” can be offered a
component providing “MoveFlangeTo6DPositionOnLine-
arTrajectory” since this component implicitly provides the
requested capability.

As for capability composition, let C, D and E be capabilities,
where C is composed of D and E. Semantically this means
that a component providing both D and E, also provides C.
A capability requester asking for C can be matched with a
capability provider offering both D and E. This component
could, e.g., be a compound component built from two other
components that provide capabilities D and E, respectively.
For the compound component it can be inferred that it
provides capability C, given that the two subcomponents
are assembled to the compound component in a way that
the capabilities of the subcomponents directly transfer to
the compound component. In an example, let “Order” be a
capability that can be composed of the capabilities “Orient”
and “Position”. A requester asking for a component pro-
viding “Order” can be offered a component providing both
“Orient” and “Position”, since this component implicitly
provides the requested capability based on the general and
shared knowledge about those capabilities.

Hierarchy and composition are just two examples of formal
and shared knowledge about capabilities likely to be useful
in practical scenarios. However, an ontology model could
be extended by additional knowledge about capabilities
depending on the expressiveness of the ontology language.

5.3 Capability and Ontologies

Capabilities are generic and abstract concepts that should
be defined independent from any specific asset and hence
independent from the Asset Administration Shell. Such an
asset independent definition motivates the provision of a
shared knowledge base of capabilities that can be referred
to any individual Industrie 4.0 component, most nota-
ble from within the Asset Administration Shell, or from
any Industrie 4.0 infrastructure element, such as registries,
search services, capability checkers, etc.

An ontology, as per definition a formal, explicit specifica-
tion of a shared conceptualization, constitutes a suitable

5 CAPABILITY DESCRIPTION14

It is an important requirement for the ontology language
to provide globally unique identifiers for the entities it
declares and defines. This is necessary for defined capabili-
ties such that they can be uniquely referred to from within
the Asset Administration Shell, etc.

The proposed separation of a shared capability ontology
model from the Industry 4.0 elements that refer to these
models bears the expectation that the capability ontology
model is universally valid, comprehensive (in terms of cov-
ering all possible domains) and complete (in terms of defin-
ing capabilities hierarchies and composition in the most
fine-grained way possible). It is obvious that such an expec-
tation is unrealistic to meet for a single universal capabil-
ity ontology. It is hence required that the shared capability
ontology follows a modular design. This can be realized by
the following design directives (for more details please refer
to [C4I Ontology] and [ETFA 2020]):

1. The capability ontology is composed of various ontology
modules

2. Any ontology module can extend one or more other
ontology modules in the way that it adds knowledge to
the module(s) it extends

3. There must be a universal capability meta-model
describing how capabilities are described, which must be
followed by all ontology modules

These modularization directives allow for a distributed
landscape of capability ontology modules (directive 1)
that are compatible with each other (directive 3) and that
facilitate domain and/or vendor specific extensions of the
generic capability model (directive 2). Note that modules
(e.g. vendor specific ones) extending other modules do not
necessarily have to be shared and thus be publicly available
in case they would unveil corporate secrets. However, it is
highly discouraged to make use of this option since effec-
tive communication about capabilities in capability-based
use cases (see Requirements for Capability-based (Continu-
ous) Engineering and Operation 0) is only possible if terms
and definitions are openly accessible.

The Web Ontology Language (OWL) has several features
that make it a suitable candidate to represent capability
ontologies:

1. The ontology language itself is a widely accepted and
well-defined W3C standard

2. A wide range of tools exists, both open-source and
commercial, particularly OWL reasoners

3. IRIs are used as globally unique identifiers, which is the
established ID standard in the Web

4. IRI namespaces can be used to distinguish between
generic, domain or vendor specific ontology modules

5. There is a formal logical underpinning (Description
Logics) to ensure decidability (in terms of computational
theory) and explainable deductions

6. Monotonicity of the underlying logic ensures that later
extensions (as typically done by extending modules) will
not invalidate previous inferences

7. Modularity can natively be realized by the language
construct of ontology imports

5.4 Skill – a Capability Implementation

While capabilities are abstract implementation-independ-
ent descriptions of the asset application functions, skills
offer the detailed implementation dependent description.
The capability and the skill differ in the level of details.
While the Capability describes the application function
abstract without relations to a concrete asset the skill
describes the application function related to the asset that
provides it. Different skill realizations can be mapped to
one capability.

The following Table 1 shows a comparison of different
alternatives for skill implementation and Figure 4 accom-
panies the table by some examples:

5 CAPABILITY DESCRIPTION 1515

FB FB_NAME {
Input: InVar_1, InVar_2, …, InVar_i
Output: OutVar_1, OutVar_2, …,
 OutVar_j
OutVar_j = f (InVar_1, InVar_2 …
 InternPar_k)
}

Examples :
PLC FB for Robot control

Function Block (FB)

Onetime invocation of
the function
OutVar_1, …OutVar_ j =
Operation (InVar_1,
InVar_2 …, InternPar_k)

Examples :
Calibration

Operation

Decision algorithms
e.g. for offer
de�nition or offer
selection

Examples :
Bidding

Semantic Protocol

Trigger Variable
starts a function
Y = f(Vari)

Examples :
Factory_Reset
Operation Mode
change

Trigger Variale

If (State Variable == xzy)
Then (Var_o = …., …)
Supervision of application
parameter

Examples :
Scaling
Unit conversion

State Variable

Skill Implementation Advantages Disadvantages

State Variable Lightweight solution for simple (sensor-like) resources No candidate for a standardized way of
realizing skills, since more complex assets
require different solutions

Trigger Variable Analogous to legacy architectures (e.g. fieldbus) Unclear semantics
(trigger by rising/falling edge, etc.)

Additional variables for input/output
parameters are required (where their associ-
ation to the trigger variable is unspecified)

Legacy design where more elegant ways are
available (operations)

Operation Lightweight solution for simple resources with reaction
times less then the real time requirement of the calling entity
(stateless, synchronous call)

Unsuited for longer running skills since
no directly associated state monitoring is
available

Function Block More generic and powerful representation of any skill

Long-running skills supported including state-machine to con-
trol and inform about its execution state, and the ability to stop/
interrupt (compare OPC UA Programs [OPC UA Programs])

Potentially a standard way of representing skills (independent
from what the skill is doing, it can be parameterized and
executed in the same way as long as the structure of the FUB
including its operations is standardized)

Complex representation alternative for
simple skills, such as a simple sensor

Semantic protocol High degree of autonomous of application

Consideration of different application states and third party
interactions

Stateful interface

Management of the interaction state
machines

Table 1: Advantages and Disadvantages of Different Types of Skill Implementation

Source: Plattform Industrie 4.0

Figure 4: Realization variants of skills

1616

6.1 Introduction

In the world of Industrie 4.0, each asset is given an Asset
Administration Shell (AAS). The asset and the AAS together
built the I4.0 component. The AAS consists of a number of
submodels in which all the information and functionali-
ties of a given asset needed to realize a dedicated set of use
cases– including its features, characteristics, properties, sta-
tus, parameters, measurement data and capabilities – are
described. It allows for the use of different communication
channels and applications and serves as the link between
I4.0 components and the connected, digital and distributed
world.

	• The Asset Administration Shell

	• can be used for non-intelligent and intelligent assets

	• covers the complete lifecycle of products, devices,
machines and facilities

	• allows for integrated value chains

	• serves as the digital basis for the development of auton-
omous systems and AI

6 Capability Description and Checking for
Industrie 4.0 Components

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS 17

Administration shell
e.g. Machine A1

Negotiation of cooperations and
contracts according to

„Language of Industrie 4.0“

Administration shell
e.g. Machine B2

Administration shell
e.g. Machine C3Fl

ex
ib

ili
ty

 o
f r

es
ou

rc
e

as
si

gn
m

en
t

Administration shell
e.g. Produce shaft

Sub model: Work plan (Example)

Property value statements

+ Step 1

+ Step 2

+ Step 3

Logik = (technical)
functions

:

AAC004: Drill tool diameter

AAC005: Drill feed rate

AAC006: Drill depth

fx

Sub model: Drilling (Example)

Sub model: Drilling (Example)

Sub model: Drilling (Example)

Property value statements
AAC004: Drill tool diameter
AAC005: Drill feed rate
AAC006: Drill depth

Property value statements
AAC004: Drill tool diameter
AAC005: Drill feed rate
AAC006: Drill depth

Property value statements
AAC004: Drill tool diameter
AAC005: Drill feed rate
AAC006: Drill depth

Figure 5: Resource Flexibility through Use of Common Properties [Composites]

In [Composites] first use cases and requirements with
respect to negotiations of co-operations and contracts were
described, see for example Figure 5.

However, the notion of capability was not yet introduced:
all concepts were described through property mapping
only. This document now offers a systematic generalized

and extended approach for handling the required capabili-
ties and the skills the I4.0 components can offer (Figure 6).

Therefore in [AASiD Part 1], Version 2.0, Capabilities were
introduced for the first time. The next chapters describe
how to use these capabilities and how they are related to
other elements of the Asset Administration Shell.

Source: Plattform Industrie 4.0

Negotiation of cooperations and
contracts according to

„Language of Industrie 4.0“

Fl
ex

ib
ili

ty
 o

f r
es

ou
rc

e
as

si
gn

m
en

t

Administration shell
e.g. Produce shaft

Submodel waork plan

Step 1: make a hole
Step 2: Pick and placee
Step 3: quality check
…

:

Logik = (technical)
functions fx

Administration shell
e.g. Machine A1

Submodel Capabilities

AAC025: Boring
Ref: Submodel
Boring

Submodel Boring

AAC008: Boring
tool diameter
AAC005: drill feed
rate

Administration shell
e.g. Machine B2

Submodel Capabilities

AAC026: Drilling
Ref: Submodel
Drilling

Submodel Drilling

AAC004: Drilling
tool diameter
AAC005: drill feed
rate

Administration shell
e.g. Machine C3

Submodel Capabilities

AAC027: Laser
Cutting
Ref: Submodel
Laser Cutting

Submodel Laser Cutting

AAC004: hole diameter
AAC006: precision

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS18

SubmodelElement
Capability

::HasSemantics
+ semanticId: Reference [0..1]
::HasKind
+ kind: ModelingKind [0..1] = lnstance
::Qualifiable
+ qualifier: Constraint [0..*]
::Referable
+ idShort: string
+ category: string [0..1]
+ description: LangStringSet [0..1]
+ parent: Referable* [0..1]
:: HasDataSpecification
+ dataSpecification: Reference [0..*]

6.2 Capability Element as Description in Asset
Administration Shell

For capability handling the submodel element “Capability”
is foreseen (see Figure 7). Like any other submodel element
in the Asset Administration Shell it is referable, i.e. it has
an idShort that is unique within its namespace (e.g. a sub-
model or a collection) and it has a reference to its semantic
definition (semanticId).

In Figure 8 the submodel elements being the most relevant
when modeling capability-skill relationships are shown:

	• The capability itself,

	• the relationship element used for describing the relation-
ship “CapabilityRealizedBy” between capability and skill,

	• data elements for skills realized as properties, and

	• operations for skills realized as executable methods

Figure 6: Assignment of a Work Plan on Production Process [Composites]

Figure 7: Capability with Inherited Attributes

Source: Plattform Industrie 4.0

Source: Plattform Industrie 4.0

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS 19

Operation

RelationshipElement

+ first: Referable*
+ second: Referable*

OperationVariable

+ value: SubmodelElement

HasDataSpecification
HasKind

HasSemantics
Qualifiable
Referable«abstract»

SubmodelElement

«abstract»
DataElement

Capability

class V2.1 Figures for Capabilities

+ inputVariable: OperationVariable [0..*]
+ outputVariable: OperationVariable [0..*]
+ inoutputVariable: OperationVariable [0..*]

AnnotatedRelationshipElement

+ annotation: DataElement [0..*]

0112/2///61360_ 4#AAF573 - as built BUILT
-CON
0112/2///61360_ 4#AAF576 - as inquired INQ
0112/2///61360_ 4#AAF577 - as offered OFF
0112/2///61360_ 4#AAF578 - as operated OP
0112/2///61360_ 4#AAF579 - as specified SPEC
0112/2///61360_ 4#AAF580 - as supplied SUP
0112/2///61360_ 4#AAF682 - as decommissioned DECOM

Value List

Figure 8: Submodel Elements in the Asset Administration Shell including Capability

Figure 9: Qualifier Life Cycle

The semanticId can be an IRI, an IRDI or a custom global
identifier. In the context of capabilities the semanticId has
a reference to an ontology that does not only define the
semantics of this single capability but also gives additional
semantic information, for example inheritance relationships.

Another important feature of a submodel element and the
submodel is the feature to be able to annotate it with qual-
ifiers. A standardized qualifier for example is the life cycle
qualifier as defined in IEC 62569-1 and introduced to IEC
CDD (see Figure 9).

Source: Plattform Industrie 4.0

Source: eCl@ss

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS20

Abbreviation Qualifier Value Definition in DIN SPEC 92000:2019 Mapping to Capabilities-Skills

R requirement Requirement that the property value
must be set in the named predicate
relation to the predicate value.

Required Capability

Requirement that the capability must be offered by the asset.

A assurance Assurance that the property value is
set in the named predicate relation
to the predicate value. The choice of
the requested value does not affect
the permissible value ranges of
other properties.

Assured Capability

Capability that is assured to be available by offering corresponding skills.

Note: Prerequisite is that the Feasability Check passed.

Note: An assured capability is also an offered capability.

O offer Assurance that the property value
is set in the named predicate rela-
tion to the predicate value. However,
the choice of the requested value
affects the permissible value ranges
of other properties.

Offered Capability

Capability that is offered but not yet assured.

Assurance depends on other required capabilities or execution context.

Note: Feasability Check not yet done, i.e. the capability cannot yet be
assured.

Table 2: Usage of Property Values Statements for capabilities and skills

Table 3: Predefined Concept Description for Relationship “Capability Realized By”

A new type of qualifier, the property value statement, is
specified in DIN SPEC 92000. Examples can be found in
[DIN SPEC 92000]. In Table 2 we show how to use the quali-
fiers in the context of capability and skill mapping2.

6.3 Predefined Semantics for Relationship
“Capability Realized By”

For being able to map capabilities to skills there needs to be
a relationship with this clearly defined semantics. Since no

such relationship is yet standardized in eCl@ss or IEC CDD
a corresponding Industrie 4.0 relationship for Asset Admin-
istration Shells is defined.

The concept description for this predefined relationship
for capability handling in the Asset Administration Shell is
defined in Table 33. For details of a concept description and
the mandatory fields for concept descriptions for relation-
ships see [AASiD Part 1]:

Concept Description

Attribute Value

identification.idType IRI

identification.id https://admin-shell.io/aas/conceptDescriptions/CapabilityRealizedBy/1/0

category RELATIONSHIP

shortName CapabilityRealizedBy

preferred Name: (en) Capability realized by

(de) Fähigkeit realisiert durch

definition (en) This is a directed relationship between a capability and the skill that is realizing the capability by
providing a corresponding implementation.

(de) Dies ist eine gerichtete Beziehung zwischen einer Fähigkeit und der Fertigkeit, die diese Fähigkeit
realisiert, indem sie eine entsprechende Implementierung bereitstellt.

2 The additional qualifier values „actual Value“ and „statement“ are ignored in this document.

3 The identification.id is subject to change since the domain admin-shell.io is just set up and the approval of the coordination board is pending.

https://admin-shell.io/aas/conceptDescriptions/CapabilityRealizedBy/1/0

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS 21

6.4 Capability maintenance and checking based
on Asset Administration Shell

The capability check can be divided in three different
aspects (see Figure 10). The development and maintenance
of one or multiple connected capability ontologies (see 1
in Figure 10), the configuration of the AAS capability ele-
ments via adopting semanticIds to refer to ontologies (see 2
in Figure 10) and the process of checking asset capabilities
(see 3 to 6 in Figure 10). To develop and maintain capability
ontologies, an authorized organization or a standard must
provide a capability description, for example as it is pro-
vided by metal processing [Heh11]. The classification must
then be transformed into an (OWL) ontology, and if there
are multiple ontologies, they must be combined.

The capability ontologies can then be referenced in the
capability element of the relevant Asset Administration
Shells to be used in the capability checking process. Various
alternatives can be adopted to implement the capability
checking functionality. For example, as depicted in Figure
10 Capability Checking by an Engineering Tool, the check-
ing can be performed by an engineering tool (see 6), which
receives (see 3) the specification of required capabilities by
a process step, and the specification of capabilities of avail-
able resources from their AAS (see 4). The tool searches in
the capability ontologies (see 5) to match required capabil-
ities against the offered capabilities and decides on which
resource should be adopted, if any. It is also possible, that
the engineering tool uses an external capability checker
and initiates the checking process and takes the result only.

2

Design and maintenance of the ontology

1

Allocate the capabilities to the AAS

Required
capabilities

3

4

5

6

Figure 10: Capability Checking by an Engineering Tool

Source: Plattform Industrie 4.0

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS22

Another example alternative is that the capability checking
is provided by AAS of resources or processes (see 3 in Fig-
ure 11). In this cases a resource’s AAS can be asked (see 4)
whether it fulfills certain capability required by a process
(see 3). This interaction can take place between the AAS of
resource and process, as depicted in Figure 11.

2

Design and maintenance of the ontology
Product / Process

with required
capabilities

Capability
checker

1

Allocate the capabilities to the AAS

4

5

Figure 11: Capability Check within an Asset Administration Shell (AAS)

6.5 Skill Modelling for Industrie 4.0
Components

In Chapter 1.5 different alternatives of how capabilities can
be realized by skills were described. In the following Table 4
it is shown how the corresponding skills are realized within
the AAS:

Source: Plattform Industrie 4.0

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS 23

Table 4: Skill Implementation in the Asset Administration Shell

Skill
implementation

AAS Skill
Mapping

Comment Example

State Variable Property,

typically with
category
VARIABLE

Properties with category VARIABLE represent
calculated or measured data (pull)

Simple resources, such as simple sensor
devices might provide their sensed data in
a data variable. For instance, a temperature
sensor might provide its measurement result
in a variable “Temperature”. The capability
“measureTemperature” could be implemented
by the data variable “Temperature”.

Trigger Variable Event Events that observe a data variable/property may
trigger (push) other events or the execution of
an operation or the change of values of proper-
ties etc.

The capability might be to “Detect and notify
if temperature higher than a given threshold”.
This Skill might be realized by a submodel ele-
ment of type “Event” that overserves the prop-
erty “Temperature”.

Trigger Variable Property,

typically with
category
VARIABLE

Variable with a certain value triggering a function
invocation.

An Example would be to have a property
“StartProgram” and depending on its value the
execution of a function is triggered.

This kind of mapping of a trigger variable is
suitable in systems that do not support events
or in which the usage of event is not recom-
mended for other reasons: the event is mim-
icked by a data variable4.

Operation Operation Operations are used for client/server communi-
cation

Submodel elements of type “operation” are a
natural way of representing skills that can be
invoked by a simple method call. Operations
provide input and output variables and var-
iables serving as input and output variables.
An operation “Open” could be the skill imple-
menting the capability “OpenPinchGripper”
with an input parameter “width”.

Function Block Submodel A submodel may realize a complex function
block. The application(s) accessing properties or
operations etc. of a submodel need deep know-
how of the function. Typically, a function block
depends on other functions block, i.e. a function
block needs to access properties of other func-
tions that serve as input for its own functionality.

Note: Submodels in AAS do not distinguish
between input and output data of a function. A
Function model (or a subfunction model) is typi-
cally modelled using another tool and format, for
example it may be specified as a MATLAB func-
tion block. The AAS is just declaring what can
be directly used by other applications but is not
specifying the functionality itself.

The model specification file can be added to the
submodel by a File/Blob submodel element.

The AAS meta model does not provide a
submodel element “function block” because
a function block can be seen as an own
submodel.

Depending on the structure of the function
block, the submodel contains data elements
for input and output parameters, operations
for start, stop, interrupt, etc., as well as option-
ally data elements representing internal states
and state transitions of complex skills. For
instance, a capability “Linear6DMotion” could
refer to a submodel “MoveLin” which rep-
resents a function block to execute a linear
motion of an articulated robot.

4 This is a typical realization in traditional fieldbus devices: an operation of a resource is triggered by a variable (e.g. a boolean set to true).
Additionally, other variables could be set to provide input parameters, and others could be used to retrieve output parameters. Even though
this way of modelling is deprecated, the AAS meta model allows for mimicking field device communication in this way.

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS24

To be able to specify the implementation of a capability a
predefined relationship element is introduced (see chapter
“Predefined Semantics for Realtionship “CapabilityReal-
izedBy”). Its short name is “CapabilityRealizedBy”.

The AAS is using the relationship element of specifying
how a capability is implemented. There can be more than
one capability implementation, i.e. if there is more than one
relationship element with semanticId “CapabilityRealizedBy”
for the same capability then the semantics of this set of re-
lationships is “alternative implementations of a capability”.
Of course, the same operations or properties can also be
used to implement different capabilities (see Figure 13
Skill ‘”drill” for Capability “DeepHoleDrilling”).

class Submodel Element – Operation

SubmodelElement
Operation

+ inputVariable: OperationVariable [0..*]
+ outputVariable: OperationVariable [0..*]
+ inoutputVariable: OperationVariable [0..*]

OperationVariable

+ value: SubmodelElement

DeepHoleDrilling:Capability

semanticId = https://www.eclipse.org/basyx/
 basys-cap.owl#DeepHoleDrilling

drill:Operationr1:RelationshipElement

id = https://admin-shell.io/aas/
 conceptDescriptions/relationshipElement/
 CapabilityRealizedBy
idShort = CapabilityRealizedBy

secondfirst

Figure 12: Operations in the Asset Administration Shell

Figure 13 :Skill ‘”drill” for Capability “DeepHoleDrilling”

Figure 14 shows the example of Figure 13 modelled with
the AASX Package Explorer5.

For common applicability of a capability submodel in
Industrie 4.0 it is recommended to not only predefine the
relationship but also to give best practices or even stand-
ardize a capability submodel with a clear semantics.

5 The AASX Package Explorer is an open source viewer and editor for Asset Administration Shells.
https://github.com/admin-shell/aasx-package-explorer

Source: Plattform Industrie 4.0

Source: Plattform Industrie 4.0

https://github.com/admin-shell/aasx-package-explorer

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS 25

http://example.com/Example
CapabilityHandling

Submodel

Submodel element

Submodel element

	rst: (Submodel) (Local) [IRI] http://example.com/sm/Capabilities
 (Capability) (Local) [IdShort] DeepHoleDrilling
second: (Submodel) (Local) [IRI] http://example.com/sm/Operations
 (Operation) (Local) [IdShort] drill

semanticId: (GlobalReference) (no-Local) [IRI]
 http://admin-shell.io/aas/ConceptDescriptions/
 CapabilityRealizedBy/1/0

RelationshipElement

ConceptDescription cannot be looked up within the AAS environment

Submodel Element

“ExampleCapabilityHandling” [IRI, http://example.com/ExampleAAS Element Content

Quali�er

Semantic ID

idShort: r1
category:

Referable members:

Kind

4

“Capabilities” [IRI, http://example.com/Capabilities]Sub4

“DeepHoleDrilling”Cap

“r1”Rel

“Drilling” [IRI, http://example.com/sm/Drilling]Sub4

“drill”Opr

“p1”Prop

http://example.com/
someDrillingMachine

Figure 14: Example for Capability Modeling with the AASX Package Explorer

Usage Examples of Capabilities in Industrie 4.0 Systems

In this section, we provide several examples of Industrie
4.0 systems, in which capability description and checking is
used to enable (continuous) engineering and operation. In
addition, multiple example capability descriptions in AAS
for various resources are elaborated.

Capability and Feasibility Check for a Pick and Place
Production Cell

Consider for example a process step where a robot must be
utilized to move a metal object with a certain weight from
position A to position B. Figure 15 illustrates the set of AAS
that exist for this example. Here, we have two resources: a
robot system and a production cell. The robot system can
be decomposed further to smaller resources, particularly a
robot and a gripper; the robot itself could be decomposed
to joints, motors, etc. This decision depends on the use case
and the level of granularity that we want to achieve. The
production cell is a composite resource, which among oth-
ers contains the robot system. The AAS of the robot system
describes the capabilities that are offered by the robot sys-
tem and the relevant properties. The AAS of the produc-
tion cell also describes the capabilities that are offered by
the production cell. In this case, we can think of describ-
ing capabilities at different levels of abstractions for the

robot system and the production cell. For example, the
robot system is capable of “grasping”, “moving” and “releas-
ing” objects, whereas the capability of the production cell
is described at a higher level as “pick and place” capabil-
ity. The AAS of the production cell also contains other
submodels, for example, the environmental model that
describes where the robot system and product is placed.

The AAS of a product provides the description of the prod-
uct; dedicated submodels can be adopted for this matter.
The AAS of the process contains the description of the pro-
cess and its required capabilities.

The actual capability and feasibility checks can be per-
formed by external applications, e.g. engineering tools
(see Figure 10). For this matter, the application needs to
access the available AAS’s, and check the offered capabili-
ties against the required capabilities, for example, via OWL
inference. Alternatively, the checks can be performed by
the relevant AAS’s (see Figure 11: Capability Check within
an Asset Administration Shell (AAS)). For example, the AAS
of a resource has sufficient information to check whether
the resource offers a certain capability, and can respond to
the queries issued by the AAS of the process. The feasibil-
ity check can be performed by an external software such as
MES using the available models within AAS’s or external
models.

Source: Plattform Industrie 4.0

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS26

Institute forProcess
Description

“Required Capabilities”
Description

“Provided Capabilities”
Description

Environmental
Model

“Provided Capabilities”
Description Skill Description

Process

Product

Product
Description

Production
Cell

producesrequires

Robot

consists of

Product

Capability and Feasibility Check during System
Engineering of a Chemical Plant

The engineering of a chemical plant is one example
described in this chapter. The abstract chemical reaction
is described at 1 in Figure 16, and in which the Engineer-
ing team must coordinate the plant design, perhaps cap-
tured in a diagram (such as at 2), and the control system,
and ultimately the plant construction, commissioning,
and operation, described at 3. The engineering process
starts by defining a chemical reaction which combines (in
our example) two pre-products (pre-product 1 and 2) and
results in resulting-product 3 (at 1 in Figure 16). This chem-
ical process is performed by a plant (at 2) which details a
reactor, represented by a so-called P&ID (Pipe & Instru-
mentation Diagram) as defined in IEC standard 62424. The
P&ID describes all technical resources of a plant i.e. pipes,
valves, vessels, pumps, heat exchanger, and many more,
as well as the requirements for the automation system in
terms of measurement and actuation points. These meas-
urement and actuation points have to be implemented by
suitable automation devices (at 5) which become part (at
6) of a control system (at 3). The chemical process, i.e. the
products and the reaction are the basic for the design of the

plant and the control system. The engineering staff or engi-
neering tool (at 4) performs the design, the operation and
maintenance of the plant and the control system.

The reactor is part of the overall plant structure. Let’s take
a reactor temperature measurement device 5 and 6 in Fig-
ure 1 as an example because it is required for proper reac-
tor function. It is desirable that consistency checks or even
generation of possible solutions fulfilling all constraints
of chemical reaction, mechanical, DCS, electrical, control
logic, and supervision by possible using capability/skill
models in the future. Today, however, many steps are per-
formed manually because the common knowledge nec-
essary to come to the right decisions is not available in
machine interpretable information models. The following
describes the engineering issues based on capabilities and
skills more in details.

To initiate the chemical reaction the reactor must contain
the reactants (pre-product) and reach a specific temper-
ature. This means that a measurement device is needed,
which offers the capability to provide temperature meas-
urement (1a in Figure 17). The design engineer or the engi-
neering tool must search for devices which offer the capa-

Figure 15: Asset Administration Shells for a Pick and Place Production Cell

Source: Plattform Industrie 4.0

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS 27

TI
B102

Pre-Product 1

Pre-Product 2

Resulting-Product 3

Equipment/technical Resource

Sensor/Actor bus

Industrial Ethernetcommunication

Fieldbus

Field device

Field device

Coupler

Link

Identsystems

Information processing resources
– Automation system

Engineering

1

2

3
4

5 6 Field device

Field device

DP/PA

Chemical
reaction

Figure 16: Engineering of a Chemical Process in Industrie 3.0 Systems

bility “temperature measurement” or “temperature value”
(1b in Figure 17). Main properties such as the required tem-
perature range must be offered by the measurement device
and therefore checked during capability check. The AAS of
such kind of devices must have the capability in our exam-
ple “temperature measurement”.

If there are AAS with this capability (2 in Figure 17) a fea-
sibility check must be started. The temperature measure-
ment device is normally mounted to the reactor vessel
(measurement point in the P&ID6 (IEC 62424)). For this
connection, mechanical and geometric models are neces-
sary to define the right mounting location and the mount-
ing style (e.g., bolt the sensor to the vessel flange – not
visualized in Figure 17). Additionally, the sensor needs a
housing designed to withstand the temperature range the
reactor will experience (not visualized in Figure 17). The
design engineer or the engineering tool must check and
compare many properties, like metal-liquid compatibility,
sensor housing and flange mount screw diameter/pitch,

and reactor/sensor temperature ranges. This is also true for
the electrical, communication or digital value aspects of the
measurement device. These required properties are results
of design steps during the planning phase and available for
the engineering tool (3 in Figure 17).

All these properties must be described in one or more than
one submodels of the measurement device AAS and the
AAS of the other planning resources. Each property has its
description in terms of its attributes such as the range of
the temperature measurement value, the offered bolts of
the sensor or the allowed metal-liquid combinations of the
sensor housing. The feasibility check starts with the request
of the necessary property details (4a and 4b in Figure 17)
which is delivered from the AAS (3 and 5 in Figure 17).
Then the engineering tool or the design engineer must
compare the requested and provided property details. More
advanced AAS can process the check by itself and deliver
the feasibility check result to the engineering tool (alterna-
tive 5 in Figure 17).

6 P&ID – Pipe & Instrumentation Diagram

Source: IEC

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS28

6.6 Capability of a Robot Arm

This example illustrates the advantages of using semanti-
cally expressive capability models in terms of ontologies.
The focus of this example is on the ontology modelling
side. For an example regarding the reference of capabilities
from within the Asset Administration Shell, see section 6.7.

The capability ontology can be realized as a set of ontol-
ogy modules where an upper level module defines the
meta model for capabilities, and more specific domain
modules define concrete capabilities. Figure 18 illustrates
a possible import hierarchy for ontology modules describ-

ing robot and robot application related capabilities. An
upper level ontology c4i specifies basic ontology classes
and properties in order to guarantee compatibility of capa-
bility descriptions. On the domain level an ontology robot
defines generic robot capabilities, and another ontology
myRobot specializes this further to describe capabilities,
e.g., provided by a particular robot manufacturer. On the
other hand, a module vdi2860 could describe capabilities
as defined in the VDI 2860 [VDI 2860] guideline from a
handling process point of view. Importing and specializing
ontologies allows for reusing multiple existing modules,
e.g., to describe specific robot-based handling operations,
such as in module robotApp.

Pre-Product 1

Deliver property details/
feasability chek results

Request for/check
property
details

Temperature
Measurement Capability
Available/not available

Capability Request
Temperature

Measurement

Capability Temperature
Measurement is needed Engineering tool

Property
details

Pre-Product 2

Resulting-
Product 3

52 4a1b

1a
4b 3

Chemical
reaction

Sensor/Actor bus

Industrial Ethernetcommunication

Fieldbus

Field device

Field device

Coupler

DP/PA
Link

Identsystems

Field device

Field device

Figure 17 General Capability and Feasibility Check Example for Measurement Device Selection

Source: Plattform Industrie 4.0

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS 29

C4i
http://www.basys40.de/kb/c4i.owl

robot
http://www.basys40.de/kb/robot.owl

myRobot
http://www.basys40.de/kb/myRobot.owl

robotApp
http://www.basys40.de/robotApp.owl

vdi2860
http://www.vdi.de/kb/2860.owl

<<import>>

User-Level

Domain-Level

<<import>> <<import>>

<<import>>

<<import>>

Figure 18: Import Hierarchy of Ontologies Realizing a Modular Capability Model

Considering the whole import closure, the set of axioms
constitutes a subsumption hierarchy as depicted in
Figure 19. The colors indicate the ontology module in
which the capability definition is defined. In this exam-
ple, the class Capability is defined in the c4i upper-level
ontology module specifying that capabilities must be
modeled as OWL classes in order to be compliant to this
model. Generic robot capabilities such as C2MoveToPos
or C2MoveOnPath as two specializations of C2Move are
defined in the robot ontology module. Depending on the
feature portfolio of a specific robot manufacturer, more
specialized capabilities such as MoveLin, MovePtp or
MoveLissajous can be defined in a vendor-specific and
vendor-authored ontology module myRobot. Note, that it
is possible to state more than one super-class in OWL, e.g.,
MoveLin can be a specialization of C2MoveOnPath as well
as C2MoveToPos.

● owl:Thing

 ● Capability

 ● C2ApplyForce

 ● C2HoldPos

 ● GravityCompensation

 ● C2Move

 ● C2MoveOnPath

 ● MoveLissajous

 ● MoveLin

 ● C2MoveToPos

 ● MoveLin

 ● MovePtp

Figure 19: Capability Specialization as Ontology Class
Hierarchy

Source: BaSys 4.2

Source: BaSys 4.2

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS30

Note that the figures here show only an excerpt of the
identifiers for the sake for brevity. In fact, each ontology
entity can be identified by the ontology IRI and an IRI
fragment. For instance, the ontology class representing
the capability C2MoveToPos has identified by the full IRI
http://www.basys40.de/kb/robot.owl#C2MoveToPos
following the modularization example from Figure 18.

From the Description Logics based underpinning of OWL,
a class subsumption relation implies that an individual/
instance asserted to a class is implicitly asserted to all its
super-classes. For the capability model this means that
a capability of class MoveLin is also a capability of class
C2MoveOnPath, C2MoveToPos, C2Move, C2ApplyForce,
and that it is a Capability in general. This inference can
be utilized by the capability references from Processes
and Resources. Let, for instance, the Asset Administration
Shell of a specific Process asset refer to C2MoveToPos as
a required capability. A capability checker would identify
every resource as a match, whose Asset Administration
Shell refers to any capability as offer (or assurance) that is
modeled as a subclass of C2MoveToPos, so as for example
MoveLin or MovePtp.

Apart from capability hierarchies, ontology models allow
for describing the composition of capabilities. This is par-
ticularly useful in compound components that are com-
posed of several subcomponents working together, such
as a robot system comprising a robot and a gripper. Mode-
ling composition in ontologies can be realized using OWL
properties. These properties would be part of the capability
meta-model and thus described in the upper-level ontol-
ogy c4i as depicted in Figure 20.

owl:topObjectProperty

associated WithCapability
hasCapability

Figure 20: Property Hierarchy of the Ontology-based
Capability Meta-Model

According to this an object can be associated with a capa-
bility or can have a capability. The property hierarchy
states that if an object has a capability, it is implicitly also
associated with this capability. hasCapability hence is a
stronger relationship than associatedWithCapability and
it should be used in a way that hasCapability refers to
all capabilities an object offers (or assures) itself, whereas
associatedWithCapability could refer to capabilities that
a subcomponent of this object is offering (or assuring). In
combination with the capability classes, this way of mode-
ling allows for defining general class descriptions, such as

∃hasCapability.C2Hold

as the class of objects that have the capability to hold
something (e.g. according to VDI2860). A logical axiom
could then state

∃hasCapability.C2Hold⊓
∃hasCapability.C2Release ⊑
∃hasCapability.C2Grasp

which means that if an object has the capability to hold
and it has the capability to release, then it also has the
capability to grasp.

In the case of compound components, an axiom such as

∃associatedWithCapability.C2MoveToPos⊓
∃associatedWithCapability.C2Grasp⊑
∃hasCapability.C2PickAndPlace

could state that a component (e.g. a robot system) that has
a subcomponent which has the capability C2MoveToPos
(e.g. a robot), is then also associated with this capability
C2MoveToPos. Analogously, the component is associated
with the capability C2Grasp if it has a subcomponent (e.g.
a gripper) which has this capability C2Grasp. The axiom
states that if both conditions hold it can be deduced that
the component has the capability C2PickAndPlace.

Important note: The above notion of ontology axioms in
terms of Description Logics notation is for brevity reasons.
This internal modelling and the formal representation are Source: BaSys 4.2

6 CAPABILITY DESCRIPTION AND CHECKING FOR INDUSTRIE 4 .0 COMPONENTS 31

asset

submodel[1]submodel[0]

submodelElement[0]
submodelElements[0] submodelElements[1]

�rst second

in[0]

someDrillingMachine:Asset

Capabilities:Submodel Drilling:Submodel

drill:Operation p1:Property

aas:AssetAdministrationShell

semanticId = http://www.eclipse.org/basyx/
basys-cap.owl#DeepHoleDrilling

DeepHoleDrilling:Capability

semanticId = 0173-1#02-AAJ214#002

drillingDepth:OperationVariable

id = https://admin-shell.io/aas/
 conceptDescriptions/relationshipElement/
 CapabilityRealizedBy
idShort = CapabilityRealizedBy

r1:RelationshipElement

Figure 21: Asset Administration Shell Structure of a Drilling Machine

not required to be understood by any provider of capability
descriptions. In fact, the modelling of capability hierarchies
and composition will most likely follow a manageable set
of modelling patterns, which can be used to provide tem-
plates and tool support for easy, form-based authoring of
capability models. This way, existing capability ontologies
can be reused and extended by domain experts, associa-
tions, companies, etc.

6.7 Capability of a Drilling Machine

Figure 21 gives an example of a drilling machine. In this
example, there is a submodel Capabilities that is intended
to collect all capabilities this asset may provide. In this case,
there is one capability DeepHoleDrilling. The semanticId of
this Capability element points to the respective class in an
ontology, that specifies the semantics of DeepHoleDrilling.

A second submodel Drilling provides access to the skill drill
via an operation. The operation drill is linked to the Capa-
bility element by RelationshipElement r1 which uses the
above introduced semantics CapabilityRealizedBy.

Source: Plattform Industrie 4.0

32

Various Industrie 4.0 use cases require an increase in the
flexibility in production systems as well as interopera-
bility across vendors. A key solution to achieve this is to
increase the abstraction level of system design by focusing
on capabilities required to perform tasks instead of con-
crete resources that are offered by specific vendors. To this
aim, machine-readable capability description and match-
ing, feasibility checking, the ability to match capabilities to
concrete skill implementations and finally executing skills
become important topics to explore.

As Asset Administration Shell is the key means to describe
information about assets and is regarded as an interaction
façade among the assets, capability descriptions should be
incorporated as part of Administration Shell of assets. The
proposal provided in this paper is the initial step towards
capability modeling in Asset Administration Shell and its
binding to skill implementation. Within the context of
the BaSys 4.2 project, this proposal will further be assessed
using various examples.

7 Conclusion and Outlook

To ensure interoperability in production systems, it is
essential to have standardized capability ontologies with a
high degree of semantic expressiveness. Although various
taxonomies exist, they are still in a preliminary stage and
low semantic expressiveness. This topic must be further
developed by relevant standardization communities.

To offer a high degree of flexibility in production sys-
tems, we should be able to specify the required capabilities
as general as possible and provide means to match these
specifications to the specification of provided capabilities
of resources. Achieving the right level of abstraction in
describing capabilities to be able to perform the matching
and also to achieve the desired flexibility in production sys-
tems requires deeper study.

33

AUTHORS

Andreas Bayha, fortiss GmbH | Jürgen Bock, KUKA Deutschland GmbH | Birgit Boss, Robert Bosch GmbH |
Christian Diedrich, ifak e.V. | Somayeh Malakuti, ABB AG

This paper is based in working groups of the BaSys 4.2 projekt, the working group VDI GMA 7.20
and working groups of the Plattform Industrie 4.0.

8 References

[AASiD Part 1] Specification Details of the Administration
Shell – Part 1: The exchange of information between
partners in the value chain of Industrie 4.0; Version 2.0.
Federal Ministry for Economic Affairs and Energy (BMWi).
Platt form Industrie 4.0, Berlin 2019. https://www.
plattform-i40.de/PI40/Redaktion/DE/Downloads/
Publikation/Details_of_the_Asset_Administration_Shell_
Part1_V2.html

[Composites] Working Paper. Relationships between
I4.0 Components – Composite Components and Smart
Production. Continuation of the Development of the
Reference Model for the I4.0 SG Models and Standards. June
2017. Federal Ministry for Economic Affairs and Energy
(BMWi). Plattform Industrie 4.0. https://www.plattform-i40.
de/PI40/Redaktion/DE/Downloads/Publikation/hm-2018-
relationship.html

[DIN SPEC 92000] DIN SPEC 92000. Data Exchange on
the Base of Property Value Statements (dt. Datenaustausch
auf der Grundlage von Eigenschaftsausprägungsaussagen).
ICS 25.040.01; 35.240.50. September 2019.

[Plattform] https://www.plattform-i40.de/PI40/
Navigation/DE/Industrie40/Glossar/glossar.html

[CapAbstraction] Malakuti, S.; Bock, J.; Weser, M.; Venet,
P.; Zimmermann, P.; Wiegand, M.; Grothoff, J.; Wagner,
C. & Bayha, A.: Challenges in Skill-based Engineering
of Industrial Automation Systems. In: IEEE. : 23rd IEEE
International Conference on Emerging Technologies and
Factory Automation, ETFA 2018, Torino, Italy, September
4–7, 2018., 2018, S. 67–74

[eCl@ss] https://www.eclass.eu

[mDNSProtocol] http://www.multicastdns.org/

[RuntimeVerification] Sánchez, C., Schneider, G.,
Ahrendt, W. et al. A survey of challenges for runtime
verification from advanced application domains (beyond
software). Form Methods Syst Des 54, 279–335 (2019).
https://doi.org/10.1007/s10703-019-00337-w

[OWL 2] PARSIA, Bijan, PATEL-SCHNEIDER, Peter,
MOTIK, Boris. OWL 2 Web Ontology Language Structural
Specification and Functional-Style Syntax (Second Edition).
2012.

[Studer] STUDER, Rudi, BENJAMINS, V. Richard, FENSEL,
Dieter. “Knowledge Engineering: Principles and Methods”.
Data & Knowledge Engineering. 1998, vol 25, no. 1–2,
p. 161–197.

[Heh11] Hehenberger, P.: Computerunterstützte
Fertigung. Eine kompakte Einführung. Springer Berlin,
Berlin[u.a], 2011.

[OPC UA Programs] OPC Foundation. OPC Unified
Architecture, Part 10: Programs. 2015.

[VDI 2860] VDI. (1990). VDI 2860:1990-05 Montage-
und Handhabungstechnik; Handhabungsfunktionen,
Handhabungseinrichtungen; Begriffe, Definitionen,
Symbole. Beuth.

[C4I Ontology] https://wiki.eclipse.org/File:2020-02-28_
BaSys42_D-2.1.C4I_Ontology_Model.pdf

[ETFA2020] Michael Weser, Jürgen Bock, Siwara Schmitt,
Alexander Perzylo, Kathrin Evers. An Ontology-based
Metamodel for Capability Descriptions. ETFA 2020.

https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V2.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V2.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V2.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part1_V2.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/hm-2018-relationship.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/hm-2018-relationship.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/hm-2018-relationship.html
https://www.plattform-i40.de/PI40/Navigation/DE/Industrie40/Glossar/glossar.html
https://www.plattform-i40.de/PI40/Navigation/DE/Industrie40/Glossar/glossar.html
https://www.eclass.eu
http://www.multicastdns.org/
https://doi.org/10.1007/s10703-019-00337-w
https://wiki.eclipse.org/File:2020-02-28_BaSys42_D-2.1.C4I_Ontology_Model.pdf
https://wiki.eclipse.org/File:2020-02-28_BaSys42_D-2.1.C4I_Ontology_Model.pdf

www.plattform-i40.de

http://www.plattform-i40.de

	Describing Capabilities of Industrie 4.0 Components
	Imprint
	Contents
	1 Introduction
	2 Terminology
	3 Capability-based (Continuous) Engineering and Operation
	3.1 Engineering and Operation of Industrie 3.0 Systems
	3.2 Capability-based (Continuous) Engineering and Operation of Industrie 4.0 Systems

	4 Requirements for Capability-based (Continuous) Engineering and Operation
	5 Capability Description
	5.1 The Abstraction Levels of Capability Descriptions
	5.2 Formalisms for Describing Capabilities
	5.3 Capability and Ontologies
	5.4 Skill – a Capability Implementation

	6 Capability Description and Checking for Industrie 4.0 Components
	6.1 Introduction
	6.2 Capability Element as Description in Asset Administration Shell
	6.3 Predefined Semantics for Relationship “Capability Realized By”
	6.4 Capability maintenance and checking based on Asset Administration Shell
	6.5 Skill Modelling for Industrie 4.0 Components
	6.6 Capability of a Robot Arm
	6.7 Capability of a Drilling Machine

	7 Conclusion and Outlook
	8 References
	AUTHORS

