
PART 1 | Page 1 of 235

DataTypeIEC61360SubmodIE

Part 1 - The exchange of information
between partners in the value chain of
Industrie 4.0 (Version 3.0RC02)

in cooperation with:

SPECIFICATION

Details of the Asset
Administration Shell

PART 1 | Page 2 of 235

Imprint

Publisher

Federal Ministry for Economic Affairs

and Climate Action (BMWK)

Public Relations

10119 Berlin

www.bmwk.de

Text and editing

Plattform Industrie 4.0

Bülowstraße 78

10783 Berlin

Design and production

The Plattform Industrie 4.0 secretariat, Berlin

Status

Released

Illustrations

Plattform Industrie 4.0; Anna Salari, designed by freepik (Title)

PART 1 | Page 3 of 235

Table of Content
1 Preamble... 12

1.1 Editorial Notes .. 13

1.2 Scope of this Document .. 13

1.3 Structure of the Document .. 14

1.4 Principles of the Work ... 14

2 Terms, Definitions and Abbreviations ... 15

2.1 Terms & Definitions .. 16

2.2 Abbreviations used in Document .. 20

2.3 Abbreviations of Metamodel ... 21

3 Introduction ... 23

4 Basic Concepts and Leading Picture .. 25

4.1 Basic Concepts ... 26

4.2 Leading Picture ... 26

5 The Metamodel of the Administration Shell .. 28

5.1 Introduction ... 29

5.2 Types and Instances ... 29

5.2.1 Life Cycle with Asset Types and Asset Instances .. 29

5.2.2 Example for Asset Types and Asset Instances .. 30

5.2.3 Asset Administration Shell Types and Instances .. 31

5.3 Composite I4.0 Components .. 32

5.4 Identification of Elements .. 33

5.4.1 Overview ... 33

5.4.2 What Identifiers Exist? .. 34

5.4.3 Identifiers for Assets and Administration Shells ... 34

5.4.4 Which Identifiers to use for which Elements ... 35

5.4.5 How are New Identifiers Created? .. 37

5.4.6 Matching Strategies for Semantic Identifiers .. 37

5.4.7 Best Practice for Creating URI Identifiers ... 38

5.4.8 Creating a Submodel Instance based on an Existing Submodel Template 39

5.4.9 Can New or Proprietary Submodels be Formed? ... 40

5.4.10 Usage of Short ID for Identifiable Elements ... 40

5.5 Events ... 41

5.5.1 Overview ... 41

5.5.2 Brief Use Cases for Events Used in Asset Administration Shells 41

PART 1 | Page 4 of 235

5.5.3 Input and Output Directions of Events .. 42

5.5.4 Types of Events .. 42

5.6 Overview Metamodel of the Administration Shell ... 44

5.7 Metamodel Specification Details: Designators (normative) .. 46

5.7.1 Introduction ... 46

5.7.2 Common Attributes ... 47

5.7.3 Asset Administration Shell Attributes .. 57

5.7.4 Asset Information Attributes .. 58

5.7.5 Submodel Attributes ... 60

5.7.6 Submodel Element Attributes ... 61

5.7.7 Overview of Submodel Element Types .. 63

5.7.8 Concept Description Attributes ... 81

5.7.9 Environment .. 82

5.7.10 Referencing in Asset Administration Shells .. 82

5.7.11 Templates, Inheritance, Qualifiers and Categories .. 94

5.7.12 Primitive and Simple Data Types.. 95

5.7.13 Cross Constraints and Invariants.. 104

6 Predefined Data Specification Templates .. 106

6.1 General ... 107

6.2 Data Specification Template Specification Details: Designators .. 109

6.3 Predefined Template for IEC61360 Properties, Value Lists and Values 110

6.3.1 General ... 110

6.3.2 Overview of Data Specification Template IEC61360.. 112

6.3.3 Data Specification IEC61360 Template Specification Details: Designators 113

6.3.4 Category of Concept Descriptions .. 119

6.4 Predefined Templates for Unit Concept Descriptions .. 123

6.4.1 General ... 123

6.4.2 Data Specification Physical Unit Template Specification Details: Designators 125

6.5 Cross Constraints and Invariants for Predefined Data Specifications 126

6.5.1 General ... 126

6.5.2 Constraints for DataSpecificationIEC61360 ... 126

6.5.3 Constraints for DataSpecificationPhysicalUnit ... 127

7 The Metamodel of the Asset Administration Shell w.r.t. Security ... 128

7.1 General ... 128

7.2 Passing Access Permissions .. 128

7.3 Overview Metamodel of Administration Shell w.r.t. Security .. 129

7.4 Metamodel Specification Details: Designators ... 132

PART 1 | Page 5 of 235

7.4.1 Introduction ... 132

7.4.2 Security Attributes ... 132

7.4.3 Access Control Policy Point Attributes ... 133

7.4.4 Access Control Attributes ... 134

7.4.5 Access Permission Rule Attributes ... 136

7.4.6 Formula Attributes .. 138

7.4.7 Cross Constraints and Invariants.. 139

8 Package File Format for the Asset Administration Shell (AASX) ... 140

8.1 General ... 141

8.2 Basic Concepts of the Open Packaging Conventions .. 141

8.3 Conventions for the Asset Administration Shell Package File Format (AASX) 142

8.4 ECMA-376 Relationships .. 142

8.5 File Name Conventions .. 144

8.6 Digital Signatures .. 144

8.7 Encryption ... 145

9 Mappings to Data Formats to Share I4.0-Compliant Information ... 146

9.1 General ... 147

9.2 General Rules ... 148

9.2.1 Introduction ... 148

9.2.2 Encoding ... 148

9.2.3 Serialization of Values of Type “Reference” ... 148

9.2.4 Semantic Identifiers for Metamodel and Data Specifications 148

9.2.5 Embedded Data Specifications ... 150

9.3 XML ... 152

9.4 JSON .. 152

9.5 RDF ... 152

9.6 AutomationML ... 153

9.7 OPC UA .. 153

10 Filtering of Information in Export and Import .. 154

11 Tools for the Asset Administration Shell ... 156

11.1 Open Source Tools ... 157

12 Summary and Outlook .. 158

Annex A. Concepts of the Administration Shell .. 161

i. General ... 161

ii. Relevant Sources and Documents ... 161

iii. Basic Concepts for Industrie 4.0 ... 161

iv. The Concept of Properties .. 162

PART 1 | Page 6 of 235

v. The Concept of Submodels .. 163

vi. Basic Structure of the Asset Administration Shell .. 164

vii. Requirements ... 166

Annex B. AASX Package File Format – Background Information.. 174

i. Selection of the Reference Format for the Asset Administration Shell Package Format ... 174

Annex C. Templates for UML Tables ... 175

i. General ... 175

ii. Template for Classes .. 175

iii. Template for enumerations ... 176

iv. Template for Primitives ... 176

v. Handling of Constraints .. 176

Annex D. Legend for UML Modelling .. 177

i. OMG UML General ... 177

ii. Notes to Graphical Representation .. 181

Annex E. Metamodel UML with Inherited Attributes ... 184

Annex F. Metamodel Changes ... 186

i. General ... 186

ii. Changes V3.0RC02 vs. V2.0.1 ... 186

a. Metamodel Changes V3.0RC02 vs. V2.0.1 w/o Security Part 186

b. Metamodel Changes V3.0RC02 vs. V2.0.1 – Data Specification IEC61360 196

c. Metamodel Changes V3.0RC02 vs. V2.0.1 – Security Part 198

iii. Changes V3.0RC02 vs. V3.0RC01 .. 200

a. Metamodel Changes V3.0RC02 vs. V3.0RC01 w/o Security Part 200

b. Metamodel Changes V3.0RC02 vs. V3.0RC01 – Data Specification IEC61360 212

c. Metamodel Changes V3.0RC02 vs. V3.0RC01 – Security Part 214

iv. Changes V3.0RC01 vs. V2.0.1 ... 215

a. Metamodel Changes V3.0RC01 w/o Security Part... 215

b. Metamodel Changes V3.0RC01 – Security Part .. 220

v. Changes V2.0.1 vs. V2.0 .. 221

a. Metamodel Changes V2.0.1 w/o Security Part ... 221

b. Metamodel Changes V2.0.1 – Security Part .. 222

vi. Changes V2.0 vs. V1.0 ... 222

a. Metamodel Changes V2.0 w/o Security Part .. 222

b. Metamodel Changes V2.0 – Security Part .. 226

Annex G. Bibliography .. 228

PART 1 | Page 7 of 235

Table of Tables
Table 1 Life Cycle Phases and Roles of Asset Type and Instance ... 29

Table 2 Elements with Allowed Identifying Values .. 35

Table 3 Proposed Structure for URIs .. 38

Table 4 Example URN and URL-based Identifiers of the Asset Administration Shell 39

Table 5 Categories for Elements with Value ... 50

Table 6 Primitive DataTypes Used in Metamodel ... 95

Table 7 Data Types with Examples ... 99

Table 8 IEC61360 Data Specification Template for Properties and Ranges .. 120

Table 9 IEC612360 Data Spec. Template for other Data Elements, Relationships Elements and Capabilities

 ... 121

Table 10 IEC612360 Data Specification Template for other Submodel Elements 122

Table 11 Other Elements with semanticId ... 123

Table 12 Distinction of Different Data Formats for the AAS .. 147

Table 13 Example Filtering of Information in XML .. 155

Table 14 Changes w/o Security ... 187

Table 15 New Elements in Metamodel w/o Security ... 189

Table 16 New, Changed or Removed Constraints w/o Security ... 192

Table 17 Changes w.r.t. Data Specification IEC61360 ... 196

Table 18 New Elements in Metamodel DataSpecification IEC61360 ... 196

Table 19 New, Changed or Removed Constraints Data Specification IEC61360 .. 196

Table 20 Changes w.r.t. Security .. 198

Table 21 New Elements in Metamodel Security .. 198

Table 22 New, Changed or Removed Constraints Security .. 198

Table 23 Changes w/o Security ... 200

Table 24 New Elements in Metamodel w/o Security ... 203

Table 25 New, Changed or Removed Constraints w/o Security ... 206

Table 26 Changes w.r.t. Data Specification IEC61360 ... 212

Table 27 New Elements in Metamodel DataSpecification IEC61360 ... 212

Table 28 New, Changed or Removed Constraints Data Specification IEC61360 .. 213

Table 29 Changes w.r.t. Security .. 214

Table 30 New Elements in Metamodel Security .. 215

Table 31 New, Changed or Removed Constraints Security .. 215

Table 32 Changes w.r.t. V2.0 w/o Security ... 216

Table 33 New Elements in Metamodel V3.0RC01 w/o Security ... 216

Table 34 New, Changed or Removed Constraints w/o Security ... 217

Table 35 Changes Metamodel w.r.t. Security.. 220

PART 1 | Page 8 of 235

Table 36 New Elements in Metamodel Security .. 220

Table 37 New, Changed or Removed Constraints Security .. 221

Table 38 Changes w.r.t. V2.0.1 w/o Security .. 221

Table 39 New Elements in Metamodel V2.0.1 w/o Security .. 221

Table 40 New, Changed or Removed Constraints w/o Security ... 222

Table 41 Changes Metamodel w.r.t. V2.0 Security ... 222

Table 42 New Elements in Metamodel V2.1 w.r.t. V2.0 Security .. 222

Table 43 New, Changed or Removed Constraints w/o Security ... 222

Table 44 Changes w.r.t. V1.0 w/o Security ... 223

Table 45 New Elements in Metamodel V1.0 w/o Security ... 224

Table 46 New, Changed or Removed Constraints w/o Security ... 225

Table 47 Changes Metamodel w.r.t. V1.0 Security ... 226

Table 48 New Elements in Metamodel w.r.t. Security ... 226

Table 49 New, Changed or Removed Constraints w/o Security ... 227

Table of Figures
Figure 1 Types of Information Exchange via Asset Administration Shells .. 24

Figure 2 Use Case File Exchange between Value Chain Partners ... 26

Figure 3 File Exchange between two value chain partners ... 27

Figure 4 Exemplary types and instances of assets represented by multiple AAS .. 30

Figure 5 Exemplary relations between metamodel of AAS, AAS types and AAS instances 32

Figure 6 Extract from Metamodel for Composite I4.0 Components .. 33

Figure 7 Unique Identifier for Administration Shell and Asset being described (Modified figure from [4]) 35

Figure 8 Motivation of exemplary identifiers and idShort .. 40

Figure 9 Forward and Reverse Events .. 41

Figure 10 Tracking of Changes via Events.. 42

Figure 11 Value Push Events across Clouds .. 42

Figure 12 Overview Metamodel of the Asset Administration Shell.. 44

Figure 13 Metamodel package overview ... 46

Figure 14 Metamodel of HasExtensions .. 47

Figure 15 Metamodel of Referables .. 48

Figure 16 Metamodel of Identifiables .. 50

Figure 17 Metamodel of HasKind .. 51

Figure 18 Metamodel of Administrative Information .. 52

Figure 19 Metamodel of Semantic References (HasSemantics) .. 53

Figure 20 Metamodel of Qualifiables ... 54

file:///C:/__localWork/Asset%20Administration%20Shell%20-%20Verwaltungsschale/Verwaltungsschale%20im%20Detail%20-%20part%201%20V3.0RC02/FINAL/DetailsOfTheAssetAdministrationShell_Part1_V3.0RC02_Final;1.docx%23_Toc104800937

PART 1 | Page 9 of 235

Figure 21 Metamodel of Qualifiers .. 54

Figure 22 Metamodel of HasDataSpecification ... 56

Figure 23 Metamodel AssetAdministrationShell .. 57

Figure 24 Metamodel of Asset Information.. 58

Figure 25 Metamodel of Submodel ... 60

Figure 26 Metamodel of Submodel Element ... 61

 Figure 27 Metamodel Overview for Submodel Element Subtypes ... 63

Figure 28 Metamodel of Annotated Relationship Elements .. 64

Figure 29 Metamodel of Basic Event Element .. 64

Figure 30 Metamodel Event Payload .. 67

 Figure 31 Metamodel of Blobs .. 68

Figure 32 Metamodel of Capabilities ... 69

Figure 33 Metamodel of Data Elements .. 69

Figure 34 Metamodel of Entities .. 70

Figure 35 Metamodel of Events ... 72

Figure 36 Metamodel of File Submodel Element .. 72

Figure 37 Metamodel of Multi Language Properties ... 73

Figure 38 Metamodel of Operations .. 74

Figure 39 Metamodel of Properties ... 75

Figure 40 Metamodel of Ranges ... 76

Figure 41 Metamodel of Reference Elements ... 76

Figure 42 Metamodel of Relationship Elements .. 77

Figure 43 Metamodel of Submodel Element Collections .. 78

Figure 44 Metamodel of Submodel Element Lists ... 79

Figure 45 Metamodel of Concept Descriptions ... 81

Figure 46 Metamodel for Environment .. 82

Figure 47 Metamodel of Reference ... 83

Figure 48 Logical Model for Keys of References .. 84

Figure 49 Metamodel of KeyTypes Enumeration .. 85

Figure 50 DataTypeDefXsd Enumeration.. 98

Figure 51 DefTypeDefRdf Enumeration .. 98

Figure 52 Built-In Types of XML Schema Definition 1.1 (XSD) ... 104

Figure 53 Data Specification Template IEC61360 .. 108

Figure 54 Data Specification Templates.. 109

Figure 55 Example Property from ECLASS .. 111

Figure 56 Example Property Description with Value List from ECLASS ... 111

Figure 57 Example Value Description from ECLASS .. 111

file:///C:/__localWork/Asset%20Administration%20Shell%20-%20Verwaltungsschale/Verwaltungsschale%20im%20Detail%20-%20part%201%20V3.0RC02/FINAL/DetailsOfTheAssetAdministrationShell_Part1_V3.0RC02_Final;1.docx%23_Toc104800952
file:///C:/__localWork/Asset%20Administration%20Shell%20-%20Verwaltungsschale/Verwaltungsschale%20im%20Detail%20-%20part%201%20V3.0RC02/FINAL/DetailsOfTheAssetAdministrationShell_Part1_V3.0RC02_Final;1.docx%23_Toc104800953
file:///C:/__localWork/Asset%20Administration%20Shell%20-%20Verwaltungsschale/Verwaltungsschale%20im%20Detail%20-%20part%201%20V3.0RC02/FINAL/DetailsOfTheAssetAdministrationShell_Part1_V3.0RC02_Final;1.docx%23_Toc104800969
file:///C:/__localWork/Asset%20Administration%20Shell%20-%20Verwaltungsschale/Verwaltungsschale%20im%20Detail%20-%20part%201%20V3.0RC02/FINAL/DetailsOfTheAssetAdministrationShell_Part1_V3.0RC02_Final;1.docx%23_Toc104800973
file:///C:/__localWork/Asset%20Administration%20Shell%20-%20Verwaltungsschale/Verwaltungsschale%20im%20Detail%20-%20part%201%20V3.0RC02/FINAL/DetailsOfTheAssetAdministrationShell_Part1_V3.0RC02_Final;1.docx%23_Toc104800974

PART 1 | Page 10 of 235

Figure 58 Example Value Description from ECLASS Advanced... 112

Figure 59 Concept Descriptions for Properties Conformant to IEC61360 .. 113

Figure 60 Metamodel of Data Specification IEC6136 ... 114

Figure 61 ValueList .. 117

Figure 62 Categories of Concept Descriptions (non normative) ... 119

Figure 63 Example of a concept description for a unit: 1/min (from ECLASS) ... 124

Figure 64 Metamodel of Data Specification Physical Unit ... 125

Figure 65 Attribute Based Access Control [22] ... 130

 Figure 66 Metamodel Overview for Access Control ... 131

Figure 67 Security Overview Packages ... 132

Figure 68 Metamodel of Security Attributes of AAS .. 132

Figure 69 Metamodel of Access Control Policy Points .. 133

Figure 70 Metamodel of Access Control ... 134

Figure 71 Metamodel of Access Permission Rule ... 136

Figure 72 Metamodel of Formulas ... 138

Figure 73 Example Formula “Machine Status not Running” (non normative) ... 139

Figure 74 Process for generating and consuming AASX packages ... 141

Figure 75 Relationship Types for AASX Packages ... 143

Figure 76 Example of an AASX package content - tree view (left) and ECMA-376 relationship types (right)

 ... 144

Figure 77 Graphic View on Exchange Data Formats for the Asset Administration Shell 147

Figure 78 Realization of Embedded Data Specifications .. 151

Figure 79 Example Filtering for Export and Import .. 154

Figure 80 Important concepts of Industrie 4.0 attached to the asset [2] [23]. I4.0 Component to be formed by

Administration Shell and Asset. ... 162

Figure 81 Exemplary definition of a property in the IEC CDD ... 163

Figure 82 Examples of different domains providing properties for submodels of the Administration Shell .. 164

Figure 83 Basic structure of the Asset Administration Shell.. 165

Figure 84 Class .. 177

Figure 85 Inheritance/Generalization .. 177

Figure 86 Multiplicity .. 178

Figure 87 Ordered Multiplicity .. 178

Figure 88 Association .. 178

Figure 89 Composition (composite aggregation) .. 178

Figure 90 Aggregation ... 179

Figure 91 Navigable Attribute Notation for Associations .. 179

Figure 92 Default Value ... 179

Figure 93 Dependency .. 179

PART 1 | Page 11 of 235

Figure 94 Abstract Class ... 179

Figure 95 Package ... 180

Figure 96 Imported Package ... 180

Figure 97 Enumeration .. 180

Figure 98 Data Type .. 180

Figure 99 Primitive Data Type ... 180

Figure 100 Note ... 181

Figure 101 Constraint .. 181

Figure 102 Graphical Representations of Composite Aggregation/Composition .. 181

Figure 103 Graphical Representation of Shared Aggregation .. 182

Figure 104 Graphical Representation of Generalization/Inheritance .. 183

Figure 105 Graphical Representation for Enumeration with Inheritance .. 183

Figure 106 Graphical Representation for deprecated classes .. 183

Figure 107 Core Model with Inherited Attributes ... 184

Figure 108 Model for Submodel Elements with Inherited Inheritance ... 185

file:///C:/__localWork/Asset%20Administration%20Shell%20-%20Verwaltungsschale/Verwaltungsschale%20im%20Detail%20-%20part%201%20V3.0RC02/FINAL/DetailsOfTheAssetAdministrationShell_Part1_V3.0RC02_Final;1.docx%23_Toc104801031

Page 12 of 235 | PART 1

1 Preamble

SCOPE OF THIS DOCUMENT | Page 13 of 235

1.1 Editorial Notes

This document, version 3.0RC02, was produced from November 2020 to May 2022 by the sub working group

“Asset Administration Shell” of the joint Working Group of Platform Industrie 4.0 Working Group “Reference

Architectures, Standards and Norms“ and the “Open Technology” Working Group of the Industrial Digital Twin

Association.

Version 3.0RC01 of this document, published in November 2020, was produced from November 2019 to

November 2020 by the sub working group “Asset Administration Shell” of the Platform Industrie 4.0 Working

Group “Reference Architectures, Standards and Norms“.

The second version V2.0 of this document was produced August 2018 to November 2019 by the sub working

group “Asset Administration Shell” of the Platform Industrie 4.0 Working Group “Reference Architectures,

Standards and Norms“. Version 2.0.l was published in May 2020.

The first version of this document was produced September 2017 to July 2018 by a joint working group with

members from ZVEI SG “Models and Standards” and Plattform Industrie 4.0 Working Group “Reference

Architectures, Standards and Norms “. The document was subsequently validated by the platform’s Working

Group “Reference Architectures, Standards and Norms“.

For better readability, in compound terms the abbreviation "I4.0" is consistently used for "Industrie 4.0". Used

on its own "Industrie 4.0" continues to be used.

This specification is versioned using Semantic Versioning 2.0.0 (semver) and follows the semver specification

[48].

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",

"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted

as described in BCP 14 RFC2119 RFC8174.

1.2 Scope of this Document

The aim of this document is to make selected specifications of the structure of the Administration Shell in such

a way that information about assets and I4.0 Components can be exchanged in a meaningful way between

partners in a value creation network.

This part of this document therefore focuses on the question of how such information needs to be processed

and structured. In order to make these specifications, the document formally stipulates a few structural

principles of the Administration Shell. This part does not describe technical interfaces of the Administration

Shell or other systems to exchange information, protocols or interaction patterns.

This document focuses on:

 Metamodel for specifying information of an Asset Administration Shell and its submodels

 Exchange format for the transport of information from one partner in the value chain to the next

 Identifiers

 Access Control

 Introduction to the need of mappings to suitable technologies to be used in different life cycle phases

of a product: XML, JSON, RDF, AutomationML and OPC UA

This document assumes some familiarity with the concept of the Asset Administration Shell. For convenience

some of the concepts are repeated in the Annex A. The concepts are being standardized as IEC standard IEC

63278 series [59]. The main stakeholders addressed in this document are architects and software developers

aiming to implement a digital twin using the Asset Administration Shell in an interoperable way. Additionally,

the content can also be used as input for discussions with international standardization organisations and

further collaborations. For an overview on documents on the Asset Administration Shell please see the

continuously updated reading guide [50]. The reading guide gives advice which documents to read depending

on the role of the reader.

https://semver.org/spec/v2.0.0.html
https://tools.ietf.org/html/bcp14
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc8174

Page 14 of 235 | PART 1

1.3 Structure of the Document

Clause 2 provides terms and definitions as well as abbreviations, both for abbreviations used in the document

and for abbreviations that may be used for elements of the metamodel defined in this document.

Clause 3 gives a short introduction into the content of this document.

Clause 4 summarises relevant, existing content from the standardization of Industrie 4.0. In other words, this

clause provides an overview and explains the motives, and is not absolutely necessary for an understanding

of the subsequent definitions.

Clause 5 stipulates sufficient structural principles of the Administration Shell in a formal manner in order to

ensure an exchange of information between the Administration Shells. An excerpt of a UML diagram is drafted

for this purpose. A more comprehensive UML discussion which does not set standards can be found in the

annex. Security topics are discussed in Clause 7.

Predefined data specifications, including those for defining concept descriptions, are specified in Clause 6.

Clause 7 describes the promotion of attribute based access control (ABAC) for information security.

Clause 8 describes, how the information of one or more Administration Shells can be packed into a compound

file format (AASX). Background information with respect to this format can be found in Annex B.

Clause 9 provides information on the exchange of information compliant to this specification in existing data

formats like XML, AutomationML, OPC UA information models, JSON or RDF.

Clause 10 deals with filtering information before exchange with external partners.

In Clause 11 hints on existing open source tools that can be used for editing, implementing or managing Asset

Administration Shells are given.

Finally, Clause 12 summarizes the content and gives an outlook on future work.

The Annex contains additional background information on Asset Administration Shell (Annex A). In the Annex

also information about UML (Annex D) and the tables used to specify UML classes as used in this specification

(Annex C) are contained.

Metamodel changes compared to previous versions are described in Annex F. For developers there are also

selected metamodel diagrams including all inherited attributes provided in Annex E.

The bibliography can be found in Annex G.

1.4 Principles of the Work

The work is based on the following principle: keep it simple but do not simplify if it affects interoperability.

For creating a detailed specification of the Administration Shell according to the scope of part 1 result papers

published by Plattform Industrie 4.0, the Trilateral cooperation with France and Italy and international

standardization results were analysed and takes as source of requirements for the specification process. As

many ideas as possible from the discussion papers were considered. See also Annex A ii for more information.

The partners represented in the Plattform Industrie 4.0 and the Industrial Digital Twin Association (IDTA) and

associations such as the ZVEI, the VDMA, VDI/ VDE and Bitkom, ensure that there is broad sectoral coverage,

both in process, hybrid and factory automation and in terms of integrating information technology (IT) and

operational technology (OT).

Design alternatives were intensively discussed within the working group. An extensive feedback process of

this document series is additionally performed within the working groups of Plattform Industrie 4.0 and the

IDTA.

Guiding principle for the specification was to provide detailed information, which can be easily implemented

also by small and medium sized enterprises.

PRINCIPLES OF THE WORK | Page 15 of 235

2 Terms, Definitions and Abbreviations

Page 16 of 235 | PART 1

2.1 Terms & Definitions

Forward notice:

Definition of terms are only valid in a certain context. This glossary applies to the context of this

document.

access control

protection of system resources against unauthorized access; a process by which use of system resources is
regulated according to a security policy and is permitted by only authorized entities (users, programs,
processes, or other systems) according to that policy

→ [SOURCE: IEC TS 62443-1-1]

application

software functional element specific to the solution of a problem in industrial-process measurement and control

Note: An application can be distributed among resources and may communicate with other applications.

→ [SOURCE: IEC TR 62390:2005-01, 3.1.2]

asset

physical or logical object owned by or under the custodial duties of an organization, having either a perceived
or actual value to the organization

Note: In the case of industrial automation and control systems, the physical assets that have the largest directly
measurable value can be the equipment under control.

→ [SOURCE: IEC TS 62443-1-1:2009, 3.2.6]

Asset Administration Shell (AAS)

standardized digital representation of the asset, corner stone of the interoperability between the applications
managing the manufacturing systems. It identifies the Administration Shell and the assets represented by it,
holds digital models of various aspects (submodels) and describes technical functionality exposed by the
Administration Shell or respective assets.

Note: Asset administration shell and Administration shell are used synonymously.

→ [SOURCE: Glossary Industrie 4.0]

attribute

data element of a property, a relation, or a class in information technology

→ [SOURCE: ISO/IEC Guide 77-2, ISO/IEC 27460, IEC 61360]

class

description of a set of objects that share the same attributes, operations, methods, relationships, and
semantics

→ [SOURCE: IEC TR 62390:2005-01, 3.1.4]

capability

implementation-independent potential of an Industrie 4.0 component to achieve an effect within a domain

Note 1: Capabilities can be orchestrated and hierarchically structured.
Note 2: Capabilities can be made executable via services.
Note 3: The impact manifests in a measurable effect within the physical world

TERMS & DEFINITIONS | Page 17 of 235

→ [SOURCE: Glossary Industrie 4.0]

component

product used as a constituent in an assembled product, system or plant

→ [SOURCE: IEC 61666:2010, 3.6]

concept

unit of knowledge created by a unique combination of characteristics

→ [SOURCE: IEC 61360-1, ISO 22274:2013, 3.7]

digital representation

information that represents characteristics and behaviors of an entity

Note 1: Information is data that within a certain context has a particular meaning. Data is content represented in a
digital and formalized manner suitable for communication, storage, interpretation or processing

Note 2: Behavior includes functionality (description and execution)

→ SOURCE: [IIC IIC:IIVOC:V2.3:20201025,adaped (attributes changed to characteristics + notes added)

digital twin

digital representation, sufficient to meet the requirements of a set of use cases

Note: in this context, the entity in the definition of digital representation is typically an asset

→ [SOURCE: IIC Vocabulary IIC:IIVOC:V2.3:20201025, adapted (an asset, process or system was changed to an asset)]

identifier (ID)

identity information that unambiguously distinguishes one entity from another one in a given domain

Note: There are specific identifiers, e.g. UUID Universal unique identifier, IEC 15418 (GS1).

→ [SOURCE: Glossary Industrie 4.0]

instance

concrete, clearly identifiable component of a certain type

Note 1: It becomes an individual entity of a type, for example a device, by defining specific property values.
Note 2: In an object-oriented view, an instance denotes an object of a class (of a type).

→ [SOURCE: IEC 62890:2016, 3.1.16 65/617/CDV]

operation

executable realization of a function

Note 1: The term method is synonym to operation
Note 2: an operation has a name and a list of parameters [ISO 19119:2005, 4.1.3]

→ [SOURCE: Glossary Industrie 4.0]

Page 18 of 235 | PART 1

ontology

an explicit specification of a (shared) conceptualization

→ [SOURCE: Gruber “A Translation Approach to portable ontology specifications”, Knowledge acquisition 5.2 (1993): 199-220]

property

defined characteristic suitable for the description and differentiation of products or components

Note 1: The concept of type and instance applies to properties.
Note 2: This definition applies to properties such as described in IEC 61360/ ISO 13584-42
Note 3: The property types are defined in dictionaries (like IEC component Data dictionary or ECLASS), they do

not have a value. The property type is also called data element type in some standards.
Note 4: The property instances have a value, and they are provided by the manufacturers. A property instance is

also called property-value pair in certain standards.
Note 5: Properties include nominal value, actual value, runtime variables, measurement values, etc.
Note 6: A property describes one characteristic of a given object.
Note 7: A property can have attributes such as code, version, and revision.
Note 8: The specification of a property can include predefined choices of values.

→ [SOURCE:according ISO/IEC Guide 77-2] as well as [SOURCE:according Glossary Industrie 4.0]

qualifier

well-defined element associated with a property instance or submodel element, restricting the value statement
to a certain period of time or use case

Note: qualifier can have value associated

→ [SOURCE: according to IEC 62569-1]

variable

software entity that may take different values, one at a time

→ [SOURCE: IEC 61499-1]

smart manufacturing

manufacturing approach, that improves its performance aspects with integrated and intelligent use of
processes and resources in cyber, physical and human spheres to create and deliver products and services,
which also collaborates with other domains within an enterprise's' value chains.

Note 1: Performance aspects include agility, efficiency, safety, security, sustainability or any other performance
indicators identified by the enterprise.

Note 2: In addition to manufacturing, other enterprise domains can include engineering, logistics, marketing,
procurement, sales or any other domains identified by the enterprise.

Note 3: this definition is, as of November 2020, under discussion within the ISO/ IEC joint working group (JWG)
21. However, it gives a good indication and a citable source.

→ [SOURCE: ISO/TMB/SMCC]

submodel

models which are technically separated from each other and which are included in the Asset Administration
Shell

Note 1: Each submodel refers to a well-defined domain or subject matter. Submodels can become standardized
and thus become submodels templates.

Note 2: Submodels can have different life cycles.
Note 3: The concept of template and instance applies to submodels.

→ [SOURCE: Glossary Industrie 4.0]

submodel element

element suitable for the description and differentiation of assets

TERMS & DEFINITIONS | Page 19 of 235

Note 1: extends the definition of properties
Note 2: could comprise operations, binary objects

→ [SOURCE: Glossary Industrie 4.0]

system

interacting, interrelated, or interdependent elements forming a complex whole

→ [SOURCE: IEC TS 62443-1-1:2009, 3.2.123]

technical functionality

functionality of the Administration Shell that is exposed by an application programming interface (API) and that
is creating added value to the respective assets(s).

Note: can consist of single elements, which are also known as functions, operations, methods, skills.

→ [SOURCE: according [18]]

template

specification of the common features of an object in sufficient detail that such object can be instantiated using
it

Note: object can be anything that has a type

→ [SOURCE: according ISO/IEC 10746-2]

type

hardware or software element which specifies the common attributes shared by all instances of the type

→ [SOURCE: IEC TR 62390:2005-01, 3.1.25]

view

projection of a model or models, which is seen from a given perspective or vantage point and omits entities
that are not relevant to this perspective

→ [SOURCE: Unified Modelling Language - UML]

Page 20 of 235 | PART 1

2.2 Abbreviations used in Document

Abbreviation Description

AAS Asset Administration Shell

AASX Package file format for the AAS

AML AutomationML

API Application Programming Interface

BITKOM Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e.

V.

BLOB Binary Large Object

CDD Common Data Dictionary

GUID Globally unique identifier

I4.0 Industrie 4.0

ID identifier

IDTA Industrial Digital Twin Association

IEC International Electrotechnical Commission

IRDI International Registration Data Identifier

IRI Internationalized Resource Identifier

ISO International Organization for Standardization

JSON JavaScript Object Notation

MIME Multipurpose Internet Mail Extensions

OPC Open Packaging Conventions (ECMA-376, ISO/IEC 29500-2)

OPC Open Platform Communications

OPCF OPC Foundation

OPC UA OPC Unified Architecture

PDF Portable Document Format

RAMI4.0 Reference Architecture Model Industrie 4.0

RDF Resource Description Framework

REST Representational State Transfer

RFC Request for Comment

SOA Service Oriented Architecture

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

UTC Universal Time Coordinated

VDI Verein Deutscher Ingenieure e.V.

VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V.

VDMA Verband Deutscher Maschinen- und Anlagenbau e.V.

W3C World Wide Web Consortium

XML eXtensible Markup Language

ABBREVIATIONS OF METAMODEL | Page 21 of 235

Abbreviation Description

ZIP archive file format that supports lossless data compression

ZVEI Zentralverband Elektrotechnik- und Elektronikindustrie e. V.

2.3 Abbreviations of Metamodel

The following abbreviations are not used in the document but may be used as abbreviations for the elements

in the metamodel defined in this document.

Abbreviation Description

AAS Asset Administration Shell

Cap Capability

CD Concept Description

DE DataElement

DST DataSpecification Template

InOut inoutputVariable

In inputVariable

Prop Property

MLP MultiLanguageProperty

Range Range

Ent Entity

Evt Event

File File

Blob Blob

Opr Operation

Out outputVariable

Qfr Qualifier

Ref ReferenceElement

Rel RelationshipElement

RelA AnnotatedRelationshipElement

SM Submodel

SMC SubmodelElementCollection

SME SubmodelElement

SML SubmodelElementList

Abbreviation Description

Sec Security

ACPP Access Control Policy Points

PAP Policy Administration Point

Page 22 of 235 | PART 1

Abbreviation Description

PDP Policy Decision Point

PEP Policy Enforcement Point

PIP Policy Information Points

AC Access Control

APR Access Permission Rule

PpO Permissions per Object

ABBREVIATIONS OF METAMODEL | Page 23 of 235

3 Introduction

Page 24 of 235 | PART 1

In this document the information model (meta model) of the Asset Administration Shell together with a file

exchange format is specified.

Besides a technology neutral specification of the information model in UML, several different formats for

exchanging Asset Administration Shells are provided: XML, JSON, RDF, AutomationML as well as an OPC

UA information model.

Figure 1 shows the different ways for information exchange via Asset Administration Shells. This part of the

“Asset Administration Shell in Detail” series deals mainly with type 1: file exchange. For enabling exchange

between partners the following steps need to be executed:

1) Definition of the Asset Administration Shell in a selected format, for example XML as explained in this

document.

2) Selecting of the additional files that are referenced in submodels of the Asset Administration Shell and

should be exchanged as well.

3) Provision of the Asset Administration Shell together with the selected files in a standardized exchange

format, the AASX package format as specified in this document.

4) Defining a secure way to exchange the file, for example via secure file download on a web-server [53].

Figure 1 Types of Information Exchange via Asset Administration Shells

However, the information model specified in this document is not only used to exchange complete Asset

Administration Shells via file exchange. It is also the basis for exchanging of information via a standardized

API (type 2 in Figure 1). The API is specified in part 2 of the document series [49].

ABBREVIATIONS OF METAMODEL | Page 25 of 235

4 Basic Concepts and Leading Picture

Page 26 of 235 | PART 1

4.1 Basic Concepts

Many concepts for Industrie 4.0 and smart manufacturing are already existing. The most important ones are

summarised in the informative Annex A.

4.2 Leading Picture

The leading use case in this document is the exchange of an Asset Administration Shell including all its

auxiliary documents and artifacts from one value chain partner to another. This is, in this document we do not

deal with the use case of already deployed Asset Administration Shells running in a specific infrastructure but

only with file exchange between partners.

Figure 2 Use Case File Exchange between Value Chain Partners

Figure 2 shows the overall picture. It depicts two value chain partners: "Supplier" is going to provide some

products, "Integrator" is going to utilize this products in order to build a machine. Two kinds of Administration

Shells are being provided; one for the asset being the type of a product, one for the assets being the actual

product instances. "Supplier" and "Integrator" are forming two independent legal bodies (Figure 3).

Picture Hoffmeister, Jochem, according Epple, 2016

IntegratorSupplier

Internal

public

Repository

2

Publish

A1

T

B1

T

Receive Composite

Ty pe machine

Internal

A4

T

B4

T

C1

T

D1

Composite

Instance machineD4

product

ty pe

consolidate

deliv ery

product

I4.0-

platform

A2 A3

B2 B3

D2 D3

LEADING PICTURE | Page 27 of 235

Figure 3 File Exchange between two value chain partners

The exchange of files needs to fulfil some requirements with respect to usability and security. There needs to

be a bilateral agreement on security constraints to be fulfilled for the transfer and usage of the files. This is

explained in more detail in Clause 7.

For usability a container format for exchanging files is used and a corresponding structure is defined (see

Clause 7.4.6). This predefined structure helps the consumer to understand the content of the single files. This

is important because an Asset Administration Shell specification can be spread across several files.

Additionally, the container may contain auxiliary files references by the AAS or even executable code.

Source: Plattform Industrie 4.0

Organizational boundary of partner “B"Organizational boundary of partner "A"

AAS D1

AAS E1

System boundary
I4.0 infrastructure of partner "A"

D2/D3

User of
partner "A"

Export

User of
partner "B"

Import
AAS D4

AAS E4

System boundary
I4.0 infrastructure of partner "B"

Page 28 of 235 | PART 1

5 The Metamodel of the Administration Shell

TYPES AND INSTANCES | Page 29 of 235

5.1 Introduction

This clause specifies the information metamodel of the Asset Administration Shell (AAS). Before doing so,

some general aspects of the handling of asset types and instances are described (see Subclause 5.2 Types

and Instances). In Subclause 5.3 handling of composite i4.0 components is explained. Another very important

aspect of the AAS is the identification aspect, see Subclause 5.4. In Subclause 5.5 aspects of event handling

are discussed.

An overview of the metamodel of the Asset Administration Shell is given in Subclause 5.6. In Subclause 5.7

the classes are described in detail together with all their attributes.

The metamodel for security aspects of the Administration Shell is described in Clause 7.

The legend for understanding the UML diagrams and the table specification of the classes is explained in

Annex C and Annex D.

An xmi representation of the UML model can be found in the repository “aas -specs” in the github project admin-shell-
io [41]: https://github.com/admin-shell-io/aas-specs/tree/master/schemas/xmi

5.2 Types and Instances

5.2.1 Life Cycle with Asset Types and Asset Instances

Industrie 4.0 utilizes an extended understanding of asset, comprising elements such as factories, production

systems, equipment, machines, components, produced products and raw materials, business processes and

orders, immaterial assets (such as processes, software, documents, plans, intellectual property, standards),

services and human personnel, and more.

The RAMI4.0 model [3] features one, generalized life-cycle axis, which was derived from IEC 62890. The basic

idea is to distinguish for all assets within Industrie 4.0 between possible types and instance. This makes it

possible to apply the type/instance distinction for all elements such as material type/material instance, product

type/product instance, machine type/ machine instance and more. Business related information will be handled

on the 'Business' layer of the RAMI4.0 model. The business layer also covers order details and workflows,

again with asset types/instances.

Table 1 Life Cycle Phases and Roles of Asset Type and Instance

Phase Description

Asset

Type

Development Valid from the ideation/conceptualization to first

prototypes/test. The 'type' of an asset is defined, and

distinguishing properties and functionalities are defined and

implemented. All (internal) design artefacts are created, such

as CAD data, schematics, embedded software, and

associated with the asset type.

Usage /

Maintenance

Ramping up production capacity. The 'external' information

associated to the asset is created, such as technical data

sheets, marketing information. The selling process starts.

Asset

Instance

Production Asset instances are created/ produced, based on the asset

type information. Specific information about production,

logistics, qualification and test are associated with the asset

instances.

Usage /

Maintenance

Usage phase by the purchaser of the asset instances. Usage

data is associated with the asset instance and might be

https://github.com/admin-shell-io/aas-specs/tree/master/schemas/xmi

Page 30 of 235 | PART 1

shared with other value chain partners, such as the

manufacturer of the asset instance.

Also included: maintenance, re-design, optimization and de-

commissioning of the asset instance. The full life-cycle history

is associated with the asset and might be archived/shared for

documentation.

Table 1 gives an overview of the different life cycle phases and the role of asset type and asset instance in

these phases: The most important relationship is between asset types and asset instance. This relationship

should be maintained throughout the life of the asset instances. By this relationship, updates to the asset types

can be forwarded to the asset instances, either automatically or on demand.

Note: For the distinction of asset 'type' and asset 'instance', the term 'asset kind' is used in this document.

The second class of relationships are feedback loops/information within the life cycle of the asset type and

instance. For product assets, for example, information on usage and maintenance of product instances may

be used to improve the manufacturing of products as also the (next) product type.

The third class of relationships are feedforward/ information exchange with assets of other asset classes. For

example, sourcing information from business assets can influence design aspects of products; or the design

of the products affects the design of the manufacturing line.

Note: For an illustration of the second/ third class of relationships confer the NIST model, as well.

A fourth class of relationships are between asset of different hierarchy levels. For example, these could be the

(dynamic) relationships between manufacturing stations and products being currently produced. These could

be also the decompositions of production systems in physical, functional or safety hierarchies. By this class of

relationships, automation equipment is explained as a complex, interrelated graph of automation devices and

products, performing intelligent production and self-learning/ optimization tasks.

5.2.2 Example for Asset Types and Asset Instances

The following figure gives an example for the handling of asset types and asset instances, and for the handling

of some exemplary information as well. Further explanation will follow in the next clauses.

Figure 4 Exemplary types and instances of assets represented by multiple AAS

Note: The example is simplified for ease of understanding and does only roughly comply to the metamodel as it is
specified in Clause 5. The ID handling is simplified as well: the names of the classes correspond to the unique
global identifier of the AASs.

TYPES AND INSTANCES | Page 31 of 235

Note: In the context of Platform Industrie 4.0 types and instances typically refer to ”asset types” and “asset
instances”. When referring to types or instances of an AAS this is explicitly denoted as “AAS types” and “AAS
instances” to not mix up both. AAS types are synonymously used with the term “AAS template”.

Note: Please refer to Clause 2 for the IEC definition of types and instances. For the scope of this document, there
is no full equivalency between these definitions and the type/instance concepts of object-oriented
programming (OO).

There shall be a concrete asset type of a temperature sensor and two uniquely identifiable physical

temperature sensors of this type. The intention is to provide a separate AAS for the asset type as well as for

every single asset instance.

In the example, the first sensor has the unique ID “0215551AA_T1” and the second sensor has the unique ID

“0215551AA_T2”. The AAS for the first sensor has the unique URI “http://T1.com/T1” and the AAS for the

second sensor has the unique URI “http://T2.com/T2”. The asset kind of both is “Instance”. The example shows

that the measured temperature at operation time of the two sensors is different: for T1 it is 60 °C, for T2 it is

100 °C. For the time-being we ignore the relationship “derivedFrom” of the two AAS “T1” and “T2” with AAS

“http://T0215551AA.com”.

Note: Even though the HTTP scheme is used in the example, the URIs do not need to be valid URLs and therefore
do not need to point to accessible content.

Note: The physical unit can be obtained by the semantic reference of the element “measuredTemperature”. For
simplicity this is not shown in the example.

These two asset instances do have a lot of information they share: the information of the asset type (in this

example a sensor type). For this asset type an own AAS is created. The unique ID for this AAS is

“http://T0215551AA.com”, the unique ID of the sensor type is “0215551AA”. The asset kind in this case is

“Type” and not “Instance”. The information that is the same for all instances of this temperature sensor type is

the ProductClass (=”Component”), the manufacturer (=”ExampleManufacturer”) and the English Description

“=’precise and fast temperature measurement’” as well as the value range “-40 °C / 140 °C”.

Now the two AAS of the two asset instances may refer to the AAS of the asset type “0215551AA” using the

relationship attribute “derivedFrom”.

Note: "attribute" refers in the UML sense to the property or characteristic of a class (instance).
Note: Typically, if a specific asset type does exist, it exists in time before the respective asset instances.
Note: The term AAS is used synonymously to the term AAS instance. An AAS may be realized based on an AAS

type. AAS types are out of scope of this document.
Note: In public standardization, the AAS Types might be standardized. However, it is much more important to

standardize the property types (called property definitions or concept descriptions) or other submodel element
typed as well as complete submodel types because those can be reused in different AAS.

Note: In the domain of the internet of things (IoT), asset instances are typically denoted as “Things” whereas asset
types are denoted as “Product”.

5.2.3 Asset Administration Shell Types and Instances

In the previous clause, type and instances of assets were explained. Obviously, the question then comes up

how to harmonize AAS as well as AAS types. In our example, it can be seen that the attributes “gloablAssetId”

and “assetKind” as well as the global AAS identifier (id, represented as name of the class) are present for all

AAS. However, if there is no standard, it is not clear that the semantics of “id”, “globalised” and “kind” are the

same for all AAS and it is not clear, which of the attributes are mandatory and which are specific for the asset

(type or instance). This is illustrated in Figure 5.

This is the purpose of this document: The definition of a metamodel that defines which attributes are mandatory

and which are optional for all AAS. The Platform Industrie 4.0 metamodel for Asset Administration Shells is

defined in Clause 5.

Note: This approach ensures that requirement tAAS-#19 is fulfilled. Another approach could have been to define
two metamodels: one for asset types and one for asset instances. However, the large set of similarities
motivated to go with one metamodel.

Note: The metamodel itself does not prescribe mandatory submodels. This is another step of standardization similar
to the prescription of submodels of AAS Type level.

Page 32 of 235 | PART 1

Note: An AAS type shall be realized based on the metamodel of an AAS as defined in this document. This Metamodel
is referred to as the “AAS Metamodel”.

Note: It is not mandatory to define an AAS type before defining an AAS (instance). An AAS instance that does not
realize an AAS type shall be realized based on the Metamodel of an AAS as defined in this document.

Figure 5 Exemplary relations between metamodel of AAS, AAS types and AAS instances

5.3 Composite I4.0 Components

As described in Clause 5.2.1 there is a class of relationships between assets of different hierarchy levels. By

this class of relationships, automation equipment is explained as a complex, interrelated graph of automation

devices and products, performing intelligent production and self-learning/ optimization tasks.

Details and examples for composite I4.0 Components can be found in [12].

The following modelling elements in the AAS metamodel can be used to realize such composite I4.0

Components:

• RelationshipElement – used to describe relationships between assets and other elements

• Submodel A complex asset is composed out of other entities and assets. These entities and assets

together with their relationship to each other are specified in a bill of material.

Note: The submodel template defining the structure of such a bill of material is not predefined by the AAS
metamodel but is assumed to contain Entity elements.

• Not every entity (Entity) that is part of the bill of material of an asset has necessarily its own Asset

Administration Shell. As described in [12] self-managed entities are distinguished from co-managed

entities (Entity/entityType).

o Self-Managed Entities have their own AAS. This is why a reference to this asset is specified

as well (via Entity/globalAssetId or an Entity/specificAssetId). Additionally, further property

statements (Entity/statement) (compare to [15]) can be added to the asset that are not

specified in the AAS of the asset itself because they are specified in relation to the composite

I4.0 Component only.

IDENTIFICATION OF ELEMENTS | Page 33 of 235

o For co-managed entities there is no separate AAS. The relationships and property statements

of such entities are managed within the AAS of the composite I4.0 Component.

Figure 6 shows an extract of the metamodel that is introduced later containing the elements being the most

important to describe composite I4.0 Components.

Figure 6 Extract from Metamodel for Composite I4.0 Components

5.4 Identification of Elements

5.4.1 Overview

Identifiers are needed according to [4] for the unique identification of many different elements within the domain

of smart manufacturing. For this reason, they are a fundamental element of a formal description of the

Administration Shell. Especially, identification is at least required for:

• Asset Administration Shells,

• Assets (as value of AssetAdministrationShell/assetInformation/globalAssetId),

Page 34 of 235 | PART 1

• submodel instances and submodel templates,

• property definitions/concept descriptions in external repositories, such as ECLASS or IEC CDD

Identification will take place for two purposes:

(1) to uniquely distinguish all elements of an Administration Shell and the asset it is representing, and

(2) to relate elements to external definitions, such as submodel templates and property definitions, in

order to bind a semantics to these data and functional elements of an Administration Shell.

5.4.2 What Identifiers Exist?

In [4], [20] two standard-conforming global identification types are defined:

a. IRDI - ISO29002-5, ISO IEC 6523 and ISO IEC 11179-6 [20] as an identifier scheme for properties

and classifications. They are created in a process of consortium-wise specification or international

standardization. To this end, users sit down together and feed their ideas into the consortia or

standardization bodies. Properties in ISO, IEC help to safeguard key commercial interests.

Repositories like ECLASS and others make it possible to standardise a relatively large number of

identifiers in an appropriately short time.

b. IRI – IRI (Rfc 39871) or URI and URL according to RFC 39862 as identification of assets, Administration

Shells and other (probably not standardized, but globally unique) properties and classifications.

The following is also permitted:

c. Custom - Internal custom identifiers such as UUIDs/GUIDs (globally unique identifiers/universally

unique identifier3), which a manufacturer can use for all sorts of in-house purposes within the

Administration Shell.

This means that the IRIs/URIs/URLs and internal custom identifiers can represent and communicate

manufacturer-specific information and functions in the Administration Shell and the 4.0 infrastructure just as

well as standardized information and functions. One infrastructure can serve both purposes.

CLSID are URIs for GUIDs. They start with a customer specific schema. So Custom should really only be used

if the customer specific identifier is no IRDI nor an IRI.

Besides the global identifiers, there are also identifiers that are unique only within a defined namespace,

typically its parent element. These identifiers are also called local identifiers. Example: Properties within a

submodel have local identifiers.

Besides absolute URIs there are also relative URIs.

See also DIN SPEC 91406 [43] for further information on identification.

5.4.3 Identifiers for Assets and Administration Shells

For the domain of smart manufacturing, the assets need to be uniquely identified worldwide [4] [20] by the

means of identifiers (IDs). The Administration Shell has a unique ID, as well.

1 https://tools.ietf.org/html/rfc3987

2 https://tools.ietf.org/html/rfc3986

3 https://en.wikipedia.org/wiki/Universally_unique_identifier.

https://en.wikipedia.org/wiki/Universally_unique_identifier

IDENTIFICATION OF ELEMENTS | Page 35 of 235

Figure 7 Unique Identifier for Administration Shell and Asset being described (Modified figure from

[4])

An Administration Shell represents exactly one asset, with a unique asset ID. In a batch-based production, the

batches will become the assets and will be described by a respective Administration Shell. If a set of assets

shall be described by an Administration Shell, a unique ID for the composite asset needs to be created [12].

The ID of the asset needs to comply with the restrictions for global identifiers according to [4][20]. If the asset

is featuring further identifications, serial numbers and alike, they are not to be confused with the unique global

identifiers of the asset itself4.

5.4.4 Which Identifiers to use for which Elements

Not every identifier is applicable for every element of the UML model representing the Asset Administration

Shell. Table 2 therefore gives an overview on the different constraints and recommendations on the various

entities, which implement "Identifiable" or "HasSemantics". Attributes relate to the metamodel in Clause 5.6

and Clause 5.7.

Table 2 Elements with Allowed Identifying Values

Elements with

identifying values

Attribute Allowed identifiers

(recommended or

typical)

Remarks

AssetAdministration

Shell

id IRI (URL) mandatory

Typically, URLs will be used

4 Such additional asset identifiers are contained in AssetInformation/specificAssetIds.

Source: Plattform Industrie 4.0

Asset, e.g. electrical axis system

Administration shell, with unique ID

I4.0 compliant communication

Complex data,

with IDs

Documents,

with IDs

Properties, with IDs

Properties, with IDs

Properties, with IDs

I4.0 Component

Unique ID

Page 36 of 235 | PART 1

Elements with

identifying values

Attribute Allowed identifiers

(recommended or

typical)

Remarks

idShort string optional5

Submodel with kind

= Template

id IRDI, IRI (URI) mandatory

IRDI, if the defined submodel is

standardized and an IRDI was applied for it

idShort string recommended

Typically used as idShort for the submodel

of kind Instance as well

semanticId IRDI, IRI (URI) optional

The semantic ID might refer to an external

information source, which explains the

formulation of the submodel (for example

an PDF if a standard)

Submodel with kind

= Instance

id IRI (URI), Custom mandatory

idShort string recommended

Typically, the idShort or English short name

of the submodel template referenced via

semanticId

semanticId IRDI, IRI (URI) recommended

Typically, the semantic is an external

reference to an external standard defining

the semantics of the submodel.

SubmodelElement idShort string mandatory

Typically the English short name of the

concept definition referenced via

semanticId

semanticId IRDI, IRI (URI),

Custom

recommended

link to a ConceptDescription or the concept

definition in an external repository via a

global ID

ConceptDescription id IRDI, IRI, Custom mandatory

ConceptDescription needs to have a global

ID. If the concept description is a copy from

an external dictionary like ECLASS or IEC

CDD it may use the same global ID as it is

used in the external dictionary.

idShort string recommended

e.g. same as English short name

isCaseOf

IRDI, IRI (URI) optional

links to the concept definition in an external

repository the concept description is a copy

from or that it corresponds to

5 Note: In version V1.0 of this specification idShort was optional for Identifiables. This changed in V2.0: idShort

was set to mandatory for all Referables. With V3.0RC02 idShort again was made optional.

IDENTIFICATION OF ELEMENTS | Page 37 of 235

Elements with

identifying values

Attribute Allowed identifiers

(recommended or

typical)

Remarks

Qualifier semanticId IRDI, IRI (URI),

Custom

recommended

Links to the qualifier type definition in an

external repository

IRDI, if the defined qualifier type is

standardized and an IRDI was applied for it

5.4.5 How are New Identifiers Created?

Following the different identification types from Clause 5.4.3, it can be stated:

(a) IRDIs are assumed to be already existing by an external specification and standardization process,

when it comes to the creation of a certain Administration Shell. For bringing such IRDI identifiers into

life, refer to Clause 5 of the document [4].

(b) URIs and URLs can easily be formed by developers themselves, also on the fly when creating a certain

Administration Shell. All that is needed is a valid authority, for example of the company, and to make

sure that the way in which the domain (e.g. admin-shell.io) is organised ensures that the path

appended to the host’s name is reserved in a semantically unique way for these identifiers. In this way,

each developer can create an arbitrary URI or URL by combining the host name and some chosen

path, which only needs to be unique in the developer's organisation.

(c) Custom identifiers can also be easily formed by developers themselves. All that is necessary is a

corresponding programmatic functionality to be retrieved. It is necessary to ensure that internal custom

identifiers can be clearly distinguished from (a) or (b).

(d) Local identifiers can also be created on the fly. They have to be unique within their namespace.

5.4.6 Matching Strategies for Semantic Identifiers

When comparing two elements there are different use cases to be considered to be able to state how these

two elements are semantically related. This chapter just gives first hints which aspects to consider when

dealing with matching semantic identifiers. For example semantic references including context information like

possible with IRDI-Path in ECLASS are not yet considered.

• Exact Matching (identical semanticIds) – DEFAULT

o With exact matching two semantic ids need to be string-identical

o Example: Property with idShort “ManufacturerName” + semanticId 0173-1#02-AAO677#002

and Property with idShort “Herstellername” + semanticId 0173-1#02-AAO677#002 have

exact equal semantics

• Intelligent Matching (compatible semanticIds)

o Ignore Versioning

▪ With intelligent matching different versions of a concept definition may be matched.

In case of semantic versioning only compatible, i.e. upward or backward compatible,

versions should be matched.

Example 1: Property with idShort “ManufacturerName” + semanticId 0173-1#02-

AAO677#002 and Property with idShort “Herstellername” + semanticId 0173-1#02-

AAO677#003 have equal semantics. Note: For comparing two semantic ids

knowledge about versioning needs to be available. In the example two IRDIs from

ECLASS are compared: ECLASS rules ensure that the semantics is always backward

compatible for new versions; for breaking changes a new IRDI would be created.

o Consider Semantic Mappings

▪ With intelligent matching existing semantic mapping information can be considered.

Semantic mappings may exist within one and the same dictionary but also between

different dictionaries and ontologies.

Page 38 of 235 | PART 1

Example: 0112/2///61360_4#AAE530 for nominal capacity of a battery in dictionary

IEC CDD and 0173-1#02-AAI048#004 in ECLASS have equal semantics6 7 8.

o Consider Domain Knowledge

▪ With intelligent matching domain knowledge available in machine readable form may

be taken into account, for example a “is-a”-relationship between two concept

definitions.

Example: A Hammer drill (0173-1#01-ADS698#010) and a percussion drill (0173-

1#01-ADS700#010) are drills for mineral material (0173-1#01-ADN177#005) and thus

are compatible to a request or constraints asking for drills for mineral material.

5.4.7 Best Practice for Creating URI Identifiers

The approach for semantics and interaction for I4.0 components [17] suggests the use of the following structure

(see Table 3) for URIs9, which is slightly modified here. The idea is to always structure URIs following a scheme

of different elements. However, this is just a recommendation and not mandatory to be used.

Table 3 Proposed Structure for URIs

Element Description Syntax

component

Organisation Legal body, administrative unit or company issuing the ID A

Organisational

subunit/

Document ID/

Document subunit

Sub entity in organisation above, or released specification or

publication of organisation above.

P

Submodel / Domain-

ID

Submodel of functional or knowledge-wise domain of asset or

Administration Shell, the identifier belongs to.

P

Version Version number in line with release of specification or publication of

identifier

P

Revision Revision number in line with release of specification or publication of

identifier

P

Property / Element-ID Property or further structural element ID of the Administration Shell P

Instance number Individual numbering of the instances within release of specification or

publication

P

In the table, syntax component "A" refers to authority of RFC 3986 (URI) and namespace identifier of RFC 2141
(URN); "P" refers to path of RFC 3986 (URI) and namespace specific string of RFC 2141 (URN).

<AAS URI> ::= <scheme> “:” <authority> [<path>]

<scheme> ::= a valid URI scheme

<authority> ::= <Organisation>

<path> ::= <subunit> <domain> <release> <element>

6 Note: This example is not representing an existing semantic mapping but would just be a candidate.

7 Semantic mapping files are also used in ECLASS between ECLASS Classic and ECLASS Advanced:

https://wiki.eclass.eu/wiki/Transaction_Update_File

8 This is the format used for semantic mapping in ECLASS:

https://www.eclass.eu/static/eClassXML/3.0/eCl@ssXML/mapping.xsd

9 URLs are also URIs

IDENTIFICATION OF ELEMENTS | Page 39 of 235

<subunit> ::= [(“/” | “:”) <Organisational Subunit/Document ID/Document subunit>]*

<domain> ::= [(“/” | “:”) <Submodel / Domain-ID>

<release> ::= [(“/” | “:”) <Version> [(“/” | “:”) <Revision>]*]

<element> ::= [(“/” | “:” | “#”) (<Property/Element-ID> | <Instance number>)*]

Using this scheme, valid URNs and URLs can be created, both being URIs. For the use of Administration

Shells, URLs are preferred as well, as functionality (such as REST services) can be bound to the identifiers.

Examples of such identifiers are given in Table 4.

Table 4 Example URN and URL-based Identifiers of the Asset Administration Shell

Identifier Description Property class Examples

Administration Shell

ID

ID of the

Administration Shell

Basis urn:zvei:SG2:aas:1:1:demo11232322

http://www.zvei.de/SG2/aas/1/1/demo11232322

Submodel ID (Type) Identification of type

of submodel

Selected

submodels are

basis, others free

urn:GMA:7.20:contractnegotiation:1:1

http://www.vdi.de/gma720/contractnegotiation/1/1

Submodel ID

(Instance)

Identification of the

instance of the

submodel

Free urn:GMA:7.20:contractnegotiation:1:1#001

http://www.vdi.de/gma720/

contractnegotiation/1/1#001

Property/parameter

/status type IDs

Identification of the

property, parameter

and status types

Domain-specific urn:PROFIBUS:PROFIBUS-PA:V3-

02:Parameter:1:1:MaxTemp

http://www.zvei.de/SG2/aas/1/1/demo11232322/

maxtemp

Property/parameter

/status instance IDs

(not used by

metamodel)

Identification of the

property, parameter

and status instance

Domain-specific urn:PROFIBUS:PROFIBUS-PA:V3-

02:Parameter:1:1: MaxTemp#0002

http://www.zvei.de/SG2/aas/1/1/demo11232322/

maxtemp#0002

Note: the last row of Table 4 is only used for completion; the metamodel does not foresee identifiers for
property/parameter/status instances.

5.4.8 Creating a Submodel Instance based on an Existing Submodel Template

In order to instantiate an existing submodel template, there should be a public specification of the submodel

template, e.g. via publication by Plattform Industrie 4.0. As a special case, instantiating a submodel from a

non-public submodel template, such as a manufacturer specification, is also possible.

In November 2020 the first two submodel templates for the Asset Administration Shell were published, one for

a nameplate ([52]) and one for generic technical data ([51]). Others followed and will follow. For an overview

of registered submodel templates see [60].

In each submodel template, the identifiers of concept definitions to be used as semantic references are already

predefined. An instantiation of such a submodel merely requires the creation of properties each with a semantic

reference to the property definition and attach a value. The same holds for other subtypes of submodel

elements.

Page 40 of 235 | PART 1

The only thing that cannot be defined in the template itself is the unique ID of the submodel instance itself (it

is not identical with the ID of the submodel template) as well as the property values etc. Templates also define

cardinalities, for example whether an element is optional or not. For submodel element lists typically more than

one element is contained: in the template an exemplary element template is contained. The other elements

can be created by copy/paste from this template.

5.4.9 Can New or Proprietary Submodels be Formed?

It is in the interest of Industrie 4.0 for as many submodels as possible, including free and proprietary

submodels, to be formed (→ [4], “Free property sets”). A submodel can be formed at any time for a specific

Administration Shell of an asset. For this purpose, the provider of the Administration Shell can form in-house

identifiers for the type and instance of the submodel in line with Section 5.4.5. All I4.0 systems are called on

to ignore submodels and properties that are not individually known, and simply to “overlook” them. For this

reason, it is always possible to deposit proprietary – e.g. manufacturer-specific or user-specific – information,

submodels or properties in an Administration Shell.

Note: It is in the intention of the Administration Shell, that proprietary information is included as well. For example,
to link to company-wide identification schemes or information required for company-wide data processing. By
this, a single infrastructure can be used to transport standard ized and proprietary information at the same
time; this conveys the introduction (and later standardization) of new information elements as well.

5.4.10 Usage of Short ID for Identifiable Elements

The Administration Shell fosters the use of worldwide unique identifiers to a large degree. However, in some

cases, this may lead to inefficiencies. An example might be referring to a property, which is part of a submodel

which is part of an Administration Shell and each of these identified by global identifiers [4]. For example, in

an application featuring a resource-oriented architecture (ROA), a worldwide unique resource locator (URL)

might be composed of a series of segments, which in turn do not need to be worldwide unique:

Figure 8 Motivation of exemplary identifiers and idShort

In order to allow such efficient addressing of elements by an API of an Administration Shell, idShort is provided

for a set of classes of the metamodel, which inherit from abstract class Referable, in order to refer to such

dependent elements (→ 5.6). However, an external system addressing resources of an Administration Shell

is required to check the respective semantics, i.e. the value of semanticId, first, before accessing elements by

id or idShort (→ 5.7.2).

EVENTS | Page 41 of 235

5.5 Events

5.5.1 Overview

Events are a very versatile mechanism of the AAS. In the following sections, first some use-cases for events

are described. Different types of events are summarized in order to depict requirements. A SubmodelElement

“Event” is introduced, which is able to declare events of an AAS. The general format of event messages is

specified.

5.5.2 Brief Use Cases for Events Used in Asset Administration Shells

• An integrator has purchased a device. Later in time, the supplier of the device provides a new firmware.

The integrator wants to detect the offer of a new firmware and wants to update the firmware after

evaluating its suitability ("forward events"). The mechanism is, that a dependent AAS ("D4") detects

events from a parent or type AAS ("D1"), which is described by the derivedFrom relation.

• An integrator/ operator operates a motor purchased from a supplier. During operation, condition

monitoring incidents occur. Both parties agree on a business model providing availability. So, the

supplier wants to monitor device statuses which are further in the value chain ("reverse events").

Figure 9 Forward and Reverse Events

• An operator is operating a certain I4.0 component over time. Changes occasionally occur to these I4.0

components from different systems. For documentation and auditing, changes to this I4.0 component

shall be tracked. This can be achieved by recording events over time.

IntegratorSupplier

Internal

Publish Receiv e

D1

E1

D4

E4

deliv ery

deliv ery

product

product

Picture Hoffmeister/ Jochem, according Epple, 2016

forward events

reverse events

Page 42 of 235 | PART 1

Figure 10 Tracking of Changes via Events

• An operator is operating different I4.0 components, which are deployed to manufacturer clouds. The

operator wants to integrate data from these components, according to DIN SPEC 92222. Therefore,

information needs to be forwarded to the operator cloud ("value push").

Figure 11 Value Push Events across Clouds

5.5.3 Input and Output Directions of Events

It may be relevant to distinguish between input and output directions of an event with respect to the observed

model, the respective Referable.

Direction Descriptions

Output The event is monitoring the Referable it is attached to. An outer message

infrastructure, e.g. by OPC UA or MQTT or AMQP, will transport these

events to other AASs and further outer systems and users.

Input The software entity, which implements the respective Referable, can handle

incoming events. These incoming events will be delivered by an outer

message infrastructure, e.g. by OPC UA or MQTT or AMQP, to the software

entity of the Referable.

5.5.4 Types of Events

According to the above use-cases, different types of events are possible. The following table gives an

impression on possible event types. Each event type will be identified by a semanticId and will feature a

specialized payload.

Operator

F4

Operation of machine asset (years)

MaintenanceError Upgrade new product

Outer system

Outer (message)

infrastructure

System boundary AAS + asset

Cloud "Supplier A"

D1

Cloud "Supplier B"

E1

Cloud "Operator"

X

value push

EVENTS | Page 43 of 235

Group Direction10 Motivation / conditions

Structural changes of

the AAS

Out • CRUD11 of Submodels, Assets, SubmodelElements

and such

In • Detect updates on parent/ type/ derivedFrom AAS

Updates of Properties

and dependent attribute

Out • update of values of SubmodelElements

• timestamped updates and time series update

• explicit triggering of an update event

Operation of AAS Out • monitoring of (long-lasting) execution of

OperationElement and updating events while execution

Monitoring, conditional,

calculated events

Out • e.g. when voiding some limits (e.g. stated by Qualifiers

with expression semantics)

Infrastructure events Out • Booting, Shutdown, out of memory … of software entity

of respective Referable (AAS, Submodel)

Repository events In/ Out • Change of semantics of IRDIs (associated concept

definition)

Security events Out • logging events

• access violations, non-fitting roles & rights, denial of

service, …

Alarms & events Out • alarms and events management analog to distributed

control systems (DCS)

Custom Event types

In any case, it is possible to define custom event types by using a proprietary, but worldwide unique, semanticId

for this event type. Such customized events can be sent or received by the software entity of the respective

Referable, based on arbitrary conditions, triggers or behavior. However, the general format of the event

messages needs to comply this specification, but the payload might be completely customized.

Event scopes

Events can be stated with an observableReference to the Referables of AAS, Submodels, and

SubmodelElements. These Referables are defining the scope of the events, which are to be received or sent.

Event attached to ... Scope

AssetAdministrationShell This event is monitoring/ representing all logical elements of an

Administration Shell, such as AssetAdministrationShell, AssetInformation,

Submodels.

Submodel This event is monitoring/ representing all logical elements of the respective

Submodel and all logical dependents.

10 see below

11 Create, Retrieve, Update, Delete

Page 44 of 235 | PART 1

SubmodelElementList and

SubmodelElementCollection and

Entity

This event is monitoring/ representing all logical elements of the respective

SubmodelElementCollection, SubmodelElementList or Entity and all logical

dependents (value or statement resp.).

SubmodelElement (others) This event is monitoring/ representing a single atomic SubmodelElement,

e.g. a data element which might include the contents of a Blob or File.

5.6 Overview Metamodel of the Administration Shell

In this clause an overview of the main concepts of the Asset Administration Shell (AAS) metamodel is

presented, see Figure 12.

 Figure 12 Overview Metamodel of the Asset Administration Shell

An AAS represents exactly one asset (AssetAdministrationShell/assetInformation). Asset types and asset

instances are distinguished by setting the attribute “AssetInformation/assetkind”. For details see Clause 5.7.4.

OVERVIEW METAMODEL OF THE ADMINISTRATION SHELL | Page 45 of 235

Note: The UML modelling uses so-called abstract classes for denoting reused concepts like “HasSemantics”,
“Qualifiable” etc.

In case of an AAS of an asset instance, a reference to the AAS representing the corresponding asset type or

another asset instance it was derived from may be added (AssetAdministrationShell/derivedFrom). The same

holds true for AAS of an asset type: also, types can be derived from other types.

An asset typically may be represented by several different identification properties like for example the serial

number, its RFID code etc. Such external identifiers are defined as specific asset IDs, each characterized by

a user defined name, a value and the user domain (tenant, subject in Attribute Based Access Control)

(AssetInformation/specificAssetId). For details see Clause 5.7.4. Additionally, a global asset identifier should

be assigned to the asset (AssetInformation/globalAssetId) in production and operation phase.

AASs, submodels and concept descriptions need to be globally uniquely identifiable (Identifiable). Other

elements like for example properties just need to be referable within the model and thus only need a local

identifier (idShort from Referable). For details on identification see Clause 5.4. For details on Identifiable and

Referable see Clause 5.7.2.2 and Clause 5.7.2.3.

Submodels consist of a set of submodel elements. Submodel elements may be qualified by a so-called

Qualifier. For details see Clause 5.7.2.7 and Clause 5.7.2.8.

There are different subtypes of submodel elements like properties, operations, lists etc. For details see Clause

5.7.7. A typical submodel element is shown in the overview figure: a property. A property is a data submodel

element that has a value of simple type like string, date etc. For details on properties see Clause 5.7.7.11.

Every submodel element needs a semantic definition (semanticId in HasSemantics) to have a well-defined

meaning. The submodel element might either refer directly to a corresponding semantic definition provided by

an external reference (e.g. to an ECLASS or IEC CDD property definition) or it may indirectly reference a

concept description (ConceptDescription). For matching strategies see Clause 5.4.6, for details see Clause

5.7.2.6.

A concept description may be a derived from another property definition of an external standard or another

concept description (ConceptDescription/isCaseOf). isCaseOf is a more formal definition of

sourceOfDefinition that is just text.

Note: In this case most of the attributes are redundant because these are defined in the external standard. It is
about usability to add attributes for information like preferredName, unit etc. Consistency w.r.t. the referenced
submodel element definitions should be ensured by corresponding tooling.

In case a concept description is not just a copy or refinement of an external standard, the provider of the AAS

using this concept description shall be aware that no interoperability with other AAS can be ensured.

Data Specification Templates can be used (DataSpecification) to define a named set of additional attributes

(besides those predefined by the metamodel) for an element. For the concept description of properties typically

the Data Specification Template following IEC 61360 is used providing for example an attribute

“preferredName”. For denoting recommended Data Specification Templates to be used the <<template>>-

dependency is used. For details see Clause 5.7.2.9.

Data Specification Templates like the template for IEC 61360 property definitions (DataSpecificationIEC61360

and DataSpecificationPhysicalUnit) are explicitly predefined and recommended to be used by the Plattform

Industrie 4.0. For details see Clause 6. If proprietary templates are used, interoperability with other AAS cannot

be ensured.

Besides submodel elements including properties and concept descriptions also other identifiable elements

may use additional templates (HasDataSpecification). Data Specification Templates are selected at design

time. For details see Clause 5.7.2.9.

Submodel elements and the submodels themselves may have additional qualifiers (Qualifiable). Per

Qualifiable there might be more than one qualifier. For details see Clause 5.7.2.7.

Page 46 of 235 | PART 1

For every AAS, security aspects need to be considered. In this document the aspect of access control is

covered in more detail. So-called access permission rules are defined, that define which permission a specific

authenticated subject has on which object. For details see Clause 7.

 Figure 13 gives a complete picture of all elements defined in the metamodel excluding security. Information

on the Security part is found in Clause 7.

Note: The abstract classes are numbered h0_, h1_ etc. (e.g. h1_Referable) but Aliases are defined for them without
this prefix. The reason for this naming is that in the tooling used for UML modelling (Enterprise Architect) no
order for inherited classes can be defined, they are ordered in an alphabetical way. For some serializations
the order is important (for example for XML).

 Figure 13 Metamodel package overview

5.7 Metamodel Specification Details: Designators (normative)

5.7.1 Introduction

In this clause the classes of the metamodel are specified in detail. In Annex B the template used to describe

the classes and relationships is explained. In Annex D some of the diagrams are shown together with all its

inherited attributes to give a complete overview.

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 47 of 235

For understanding the specifications, it is crucial to understand the common attributes first (Clause 5.7.2).

They are reused throughout the specifications of the other classes (“inherits from”) and define important

concepts like identifiable, qualifiable etc. They are abstract, i.e. there is no object instance of such classes.

Another important concept is the concept of referencing and how a reference is represented in the UML

diagrams and the tables. This is explained in Clause 5.7.9 and Annex D ii.

Constraints that are no invariants of classes are specified in Clause 5.7.12.3.

5.7.2 Common Attributes

5.7.2.1 Extensions (HasExtensions)

Class: HasExtensions <<abstract>>

Explanation: Element that can be extended by proprietary extensions.

Note: Extensions are proprietary, i.e. they do not support global
interoperability.

Inherits from: --

Attribute Explanation Type Card.

extension An extension of the element. Extension 0..*

Class: Extension

Explanation: Single extension of an element.

Inherits from: HasSemantics

Attribute Explanation Type Card.

name Name of the extension.

string 1

Figure 14 Metamodel of HasExtensions

Page 48 of 235 | PART 1

Class: Extension

valueType Type of the value of the

extension.

Default: xs:string

DataTypeDefXsd 0..1

value Value of the extension ValueDataType 0..1

refersTo Reference to an element the

extension refers to.

ModelReference<Referable> 0..*

5.7.2.2 Referable Attributes

Figure 15 Metamodel of Referables

The metamodel distinguishes between elements that are identifiable, referable or none of both.

Referable elements can be referenced via the idShort. For details on how to do referencing see Clause

5.7.9.

Not every element of the metamodel is referable. There are elements that are just attributes of a referable.

For non-identifiable referables the idShort shall be unique in its name space (Constraint AASd-022). A name

space is defined as follows in this context: The parent element(s) an element is part of and that is either

referable or identifiable is the name space of the element. Examples: A submodel is the name space for the

properties contained in it. The name space of a submodel element being contained in a submodel element

collection is the submodel element collection.

Class: Referable <<abstract>>

Explanation: An element that is referable by its idShort. This ID is not globally unique. This ID is unique

within the name space of the element.

Inherits from: HasExtensions

Attribute Explanation Type Card.

category The category is a value that gives further meta information

w.r.t. the class of the element. It affects the expected

existence of attributes and the applicability of constraints.

Note: The category is not identical to the semantic definition
(HasSemantics) of an element. The category e.g.
could denote that the element is a measurement

string 0..1

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 49 of 235

Class: Referable <<abstract>>

value whereas the semantic definition of the element
would denote that it is the measured temperature.

idShort In case of identifiables this attribute is a short name of the

element. In case of referable this ID is an identifying string

of the element within its name space.

Constraint AASd-027: idShort of Referables shall have a

maximum length of 128 characters.

Note: In case the element is a property and the property has
a semantic definition (HasSemantics/semanticId)
conformant to IEC61360 the idShort is typically
identical to the short name in English – if available.

string 0..1

displayName Display name. Can be provided in several languages.

If no display name is defined in the language requested by

the application, then the display name is selected in the

following order if available:

- the preferred name in the requested language of the

concept description defining the semantics of the

element

- If there is a default language list defined in the

application, then the corresponding preferred name

in the language is chosen according to this order.

- the English preferred name of the concept

description defining the semantics of the element

- the short name of the concept description

- the idShort of the element

LangStringSet 0..1

description Description or comments on the element.

The description can be provided in several languages.

If no description is defined, then the definition of the concept

description that defines the semantics of the element is

used.

Additional information can be provided, e.g. if the element is

qualified and which qualifier types can be expected in which

context or which additional data specification templates are

provided.

LangStringSet 0..1

checksum Checksum to be used to determine if an Referable (including

its aggregated child elements) has changed.

The checksum is calculated by the user’s tool environment.

The checksum has no semantic meaning for an Asset

Administration Shell model and there is no requirement for

Asset Administration Shell tools to manage the checksum.

string 0..1

In Table 5 predefined categories are described.

Page 50 of 235 | PART 1

Table 5 Categories for Elements with Value

Category: Applicable to, Examples Explanation:

CONSTANT Property

ReferenceElement

An element with category CONSTANT is an element with a

value that does not change over time.

In ECLASS this kind of category has the category “Coded

Value”.

PARAMETER Property

MultiLanguageProperty

Range

SubmodelElementCollection

An element with category PARAMETER is an element that

is once set and then typically does not change over time.

This is for example the case for configuration parameters.

VARIABLE Property

SubmodelElementList

An element with category VARIABLE is an element that is

calculated during runtime, i.e. its value is a runtime value.

5.7.2.3 Identifiable Attributes

Figure 16 Metamodel of Identifiables

An identifiable element is a referable with a globally unique identifier (Identifier). To reference an identifiable

only the global ID (Identifiable/id) shall be used because the idShort is not unique for an identifiable.

Identifiables may have administrative information like version etc.

Referable elements not being identifiable can be referenced, but for doing so the context of the element is

needed. A referable not being identifiable has a short identifier (idShort) that is unique just in its context, its

name space.

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 51 of 235

Information about identification can be found in Clause 5.4. In Clause 5.4.4 constraints and recommendation

on when to use which type of identifier can be found.

Examples for identifiers can be found in Clause 5.4.3 Identifiers for Assets and Administration Shells.

See Clause 5.4.4 for information which identifier types are supported.

Class: Identifiable <<abstract>>

Explanation: An element that has a globally unique identifier.

Inherits from: Referable

Attribute Explanation Type Card.

administration Administrative information of an identifiable

element.

Note: Some of the administrative information
like the version number might need to
be part of the identification.

AdministrativeInformation 0..1

id The globally unique identification of the

element.

Identifier 1

5.7.2.4 Template or Instance of Model Element Attributes (HasKind)

Figure 17 Metamodel of HasKind

Class: HasKind

Explanation: An element with a kind is an element that can either represent a template or an

instance.

Default for an element is that it is representing an instance.

Inherits from: --

Attribute Explanation Type Card.

kind Kind of the element: either type or instance.

Default Value = Instance

ModelingKind 0..1

The kind enumeration is used to denote whether an element is of kind Template or Instance.

Enumeration: ModelingKind

Explanation: Enumeration for denoting whether an element is a template or an

instance.

Page 52 of 235 | PART 1

Enumeration: ModelingKind

Set of: --

Literal Explanation

Template
Software element which specifies the common attributes shared by

all instances of the template.

[SOURCE: IEC TR 62390:2005-01, 3.1.25] modified

Instance
Concrete, clearly identifiable component of a certain template.

Note: It becomes an individual entity of a template, for example a
device model, by defining specific property values.

Note: In an object-oriented view, an instance denotes an object of a
template (class).

[SOURCE: IEC 62890:2016, 3.1.16 65/617/CDV] modified

5.7.2.5 Administrative Information Attributes

Figure 18 Metamodel of Administrative Information

Every Identifiable may have administrative information. Administrative information includes for example

• Information about the version of the element

• Information about who created or who made the last change to the element

• Information about the languages available in case the element contains text, for translating purposed

also the master or default language may be defined

In the first versions of the AAS metamodel only version information is defined for administrative information. In

later versions additional attributes may be added.

Version corresponds in principle to the version_identifier according to IEC 62832 but is not used for concept

identifiers only (IEC TS 62832-1) but for all identifiable elements. Version and revision together correspond to

the version number according to IEC 62832.

AdministrativeInformation allows the usage of templates (HasDataSpecification) but there are no predefined

templates in this version of the metamodel for administrative information.

Note: Two submodels with the same semanticId but different administrative information (this especially includes
different versions), shall have different IDs (Submodel/id). The idShort or numeric identifier typically do not
change, i.e. they are identical. The same holds for other identifiables (Identifiable/id).

Note: Since submodels with different version shall have different identifiers it is possible that an AAS has two

submodels with the same semanticId but different versions, i.e. different administrative metainformation.

Note: Some of the administrative information like the version number might need to be part of the identification. This

is similar to the handling of identifiers for concept descriptions using IRDIs. In ECLASS the IRDI 0173 -1#02-
AO677#002 contains the version information #002.

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 53 of 235

Note: The process of versioning of or adding other administrative information to elements is done by external version

or configuration management software and not by the AAS itself.

Class: AdministrativeInformation <<DataType>>

Explanation: Administrative metainformation for an element like version information.

Constraint AASd-005: If AdministrativeInformation/version is not specified than also

AdministrativeInformation/revision shall be unspecified. This means, a revision

requires a version. if there is no version there is no revision neither. Revision is

optional.

Inherits from: HasDataSpecification

Attribute Explanation Type Card.

version Version of the element. string 0..1

revision Revision of the element. string 0..1

5.7.2.6 Semantic References Attributes (HasSemantics)

Figure 19 Metamodel of Semantic References (HasSemantics)

Class: HasSemantics <<abstract>>

Explanation: Element that can have a semantic definition plus some supplemental semantic

definitions.

Constraint AASd-118: If there is a supplemental semantic ID

(HasSemantics/supplementalSemanticId) defined then there shall be also a

main semantic ID (HasSemantics/semanticId).

Inherits from: --

Attribute Explanation Type Card.

semanticId Identifier of the semantic definition of the

element. It is called semantic ID or also main

semantic ID of the element.

It is recommended to use a global
reference.

Reference 0..1

supplementalSemanticId Identifier of a supplemental semantic

definition of the element. It is called

supplemental semantic ID of the element.

Reference 0..*

Page 54 of 235 | PART 1

Class: HasSemantics <<abstract>>

It is recommended to use a global
reference.

5.7.2.7 Qualifiable Attributes

Figure 20 Metamodel of Qualifiables

Class: Qualifiable <<abstract>>

Explanation: The value of a qualifiable element may be further qualified by one or more qualifiers.

Inherits from: --

Attribute Explanation Type Card.

qualifier Additional qualification of a qualifiable element. Qualifier 0..*

5.7.2.8 Qualifier Attributes

Figure 21 Metamodel of Qualifiers

For qualifiable elements, additional qualifiers may be defined. Besides other qualifiers, a level qualifier defining

the level type minimal value, maximum value, typical value and nominal value can be found in IEC 62569-1.

Additional qualifier types are defined in DIN SPEC 92000 like for example expressions semantics and

expression logic.

Class: Qualifier

Explanation: A qualifier is a type-value-pair that makes additional statements w.r.t. the value of the

element.

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 55 of 235

Class: Qualifier

Constraint AASd-006: If both, the value and the valueId of a Qualifier are present then

the value needs to be identical to the value of the referenced coded value in

Qualifier/valueId.

Constraint AASd-020: The value of Qualifier/value shall be consistent to the data type

as defined in Qualifier/valueType.

Inherits from: HasSemantics

Attribute Explanation Type Card.

kind The qualifier kind describes the kind of the qualifier

that is applied to the element.

Default: ConceptQualifier

QualifierKind 0..1

type The qualifier type describes the type of the qualifier

that is applied to the element.

QualifierType 1

valueType Data type of the qualifier value. DataTypeDefXsd 1

value The qualifier value is the value of the qualifier. ValueDataType 0..1

valueId Reference to the global unique ID of a coded value.

It is recommended to use a global reference.

Reference 0..1

It is recommended to add a semanticId for a Qualifier.

Enumeration: QualifierKind

Explanation: Enumeration for kinds of qualifiers.

Set of: --

Literal Explanation

ValueQualifier
qualifies the value of the element and can change during run-time

Value qualifiers are only applicable to elements with kind=„Instance”

ConceptQualifier
qualifies the semantic definition the element is referring to

(HasSemantics/semanticId)

TemplateQualifier
qualifies the elements within a specific submodel on concept level.

Template qualifiers are only applicable to elements with kind=„Template”

Page 56 of 235 | PART 1

5.7.2.9 Used Templates for Data Specification Attributes (HasDataSpecification)

Figure 22 Metamodel of HasDataSpecification

Class: HasDataSpecification <<abstract>>

Explanation: Element that can be extended by using data specification templates. A data

specification template defines a named set of additional attributes an

element may or shall have. The data specifications used are explicitly

specified with their global ID.

Inherits from: --

Attribute Explanation Type Card.

dataSpecification Global reference to the data

specification template used by the

element.

This is a global reference.

Reference 0..*

For more details on data specifications see Clause 6.

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 57 of 235

5.7.3 Asset Administration Shell Attributes

 Figure 23 Metamodel AssetAdministrationShell

An Administration Shell is uniquely identifiable since it inherits from Identifiable.

The derivedFrom attribute is used to establish a relationship between two Asset Administration Shells that are

derived from each other. For more detailed information on the derivedFrom concept see Clause 5.2 Types and

Instances.

Class: AssetAdministrationShell

Explanation: An Asset Administration Shell.

Inherits from: Identifiable; HasDataSpecification

Attribute Explanation Type Card.

derivedFrom The reference to the AAS

the AAS was derived from.

ModelReference<AssetAdministrationShell> 0..1

assetInformation Meta information about the

asset the AAS is

representing.

AssetInformation 1

submodel Reference to a submodel of

the AAS.

ModelReference<Submodel> 0..*

Page 58 of 235 | PART 1

Class: AssetAdministrationShell

A submodel is a description

of an aspect of the asset the

AAS is representing.

The asset of an AAS is

typically described by one

or more submodels.

Temporarily no submodel

might be assigned to the

AAS.

5.7.4 Asset Information Attributes

Figure 24 Metamodel of Asset Information

Class: AssetInformation

Explanation: In AssetInformation identifying meta data of the asset that is represented by an AAS is

defined.

The asset may either represent an asset type or an asset instance.

The asset has a globally unique identifier plus – if needed – additional domain specific

(proprietary) identifiers. However, to support the corner case of very first phase of

lifecycle where a stabilised/constant global asset identifier does not already exist, the

corresponding attribute “globalAssetId” is optional.

Inherits from: --

Attribute Explanation Type Card.

assetKind Denotes whether the Asset is of kind “Type” or

“Instance”.

AssetKind 1

globalAssetId Global identifier of the asset the AAS is representing. Reference 0..1

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 59 of 235

Class: AssetInformation

This attribute is required as soon as the AAS is

exchanged via partners in the life cycle of the asset.

In a first phase of the life cycle the asset might not yet

have a global ID but already an internal identifier. The

internal identifier would be modelled via

“specificAssetId”.

This is a global reference.

specificAssetId Additional domain specific, typically proprietary

identifier for the asset like e.g. serial number etc.

SpecificAssetId 0..*

defaultThumbnail Thumbnail of the asset represented by the Asset

Administration Shell. Used as default.

Resource 0..1

Note: Besides this asset information there still might be an identification submodel with further information. Specific
asset IDs mainly serve the purpose for supporting discovery of AASs for an asset.

Note: Keys for specificAssetIds do not need to be unique.
Note: SemanticIds for the single specificAssetIds do not need to be unique.

Class: Resource <<DataType>>

Explanation: Resource represents an address to a file (a locator). The value is an URI that can

represent an absolute or relative path.

Inherits from: --

Attribute Explanation Type Card.

path Path and name of the resource (with file

extension).

The path can be absolute or relative.

PathType 1

contentType Content type of the content of the file.

The content type states which file extensions the

file can have.

ContentType 0..1

Enumeration: AssetKind

Explanation: Enumeration for denoting whether an asset is a type asset or an

instance asset.

Set of: --

Literal Explanation

Type
hardware or software element which specifies the common attributes shared

by all instances of the type

[SOURCE: IEC TR 62390:2005-01, 3.1.25]

Instance
concrete, clearly identifiable component of a certain type

Page 60 of 235 | PART 1

Enumeration: AssetKind

Note 1: It becomes an individual entity of a type, for example a device,
by defining specific property values.

Note 2: In an object-oriented view, an instance denotes an object of a
class (of a type).

[SOURCE: IEC 62890:2016, 3.1.16] 65/617/CDV

For more information on types and instances see Clause 5.2.

Class: SpecificAssetId

Explanation: A specific asset ID describes a generic supplementary identifying attribute of the

asset. The specific asset ID is not necessarily globally unique.

Inherits from: HasSemantics

Attribute Explanation Type Card.

name Name of the identifier

string 1

value The value of the specific asset identifier with the

corresponding name.

string 1

externalSubjectId The (external) subject the specific asset ID

belongs to or has meaning to.

This is a global reference.

Reference 1

For more information on the concept of subject see Clause 7 on Attribute Based Access Control (ABAC).

5.7.5 Submodel Attributes

Figure 25 Metamodel of Submodel

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 61 of 235

Class: Submodel

Explanation: A submodel defines a specific aspect of the asset represented by the AAS.

A submodel is used to structure the digital representation and technical

functionality of an Administration Shell into distinguishable parts. Each submodel

refers to a well-defined domain or subject matter. Submodels can become

standardized and, thus, become submodels templates.

Inherits from: Identifiable; HasKind; HasSemantics; Qualifiable; HasDataSpecification

Attribute Explanation Type Card.

submodelElement A submodel consists of zero or more

submodel elements.

SubmodelElement 0..*

A submodel is handled like a SubmodelElementCollection. The difference is that it is identifiable and a predefined
unit of information within the AAS.

It is recommended to add a semanticId for a submodel.

A submodel can be qualified (Qualifiable).

Submodel elements are qualifiable elements, i.e. one or more qualifiers may be defined for each of them.

Submodels and submodel elements may also have data specification templates defined for them. So far, no

standardized data specification templates for submodels and submodel elements are defined.

In case the submodel is of kind=Template (modelling kind as inherited by HasKind) then the submodel

elements within the submodel are presenting submodel element templates. In case the submodel is of

kind=Instance then its submodel elements represent submodel element instances.

5.7.6 Submodel Element Attributes

Figure 26 Metamodel of Submodel Element

Submodel element are qualifiable elements, i.e. one or more qualifiers may be defined for each of them.

Submodel elements may also have data specification templates defined for them. A template might for

example be defined to mirror some of the attributes like preferredName and unit of a property concept definition

if there is no corresponding concept description available. Otherwise there only is the property definition

referenced by semanticId available for the property: the lookup of the attributes has to be realized online in a

different way and is not available offline.

In case the submodel is of kind=Template then the submodel elements within the submodel are presenting

submodel element types. In case the submodel is of kind=Instance then its submodel elements represent

submodel element instances.

Page 62 of 235 | PART 1

Class: SubmodelElement <<abstract>>

Explanation: A submodel element is an element suitable for the description and differentiation of

assets.

It is recommended to add a semanticId to a SubmodelElement.

Inherits from: Referable; HasKind; HasSemantics; Qualifiable; HasDataSpecification

Attribute Explanation Type Card.

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 63 of 235

5.7.7 Overview of Submodel Element Types

 Figure 27 Metamodel Overview for Submodel Element Subtypes

Page 64 of 235 | PART 1

Submodel elements include data properties as well as operations, events and other elements needed to

describe a model for an asset (see Figure 27).

5.7.7.1 Annotated Relationship Element Attributes

Figure 28 Metamodel of Annotated Relationship Elements

Class: AnnotatedRelationshipElement

Explanation: An annotated relationship element is a relationship element that can be annotated

with additional data elements.

Inherits from: RelationshipElement

Attribute Explanation Type Card.

annotation A data element that represents an annotation

that holds for the relationship between the two

elements.

DataElement 0..*

5.7.7.2 Basic Event Element Attributes

Figure 29 Metamodel of Basic Event Element

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 65 of 235

Class: BasicEventElement

Explanation: A basic event element.

Inherits from: EventElement

Attribute Explanation Type Card.

observed Reference to the Referable, which defines

the scope of the event. Can be AAS,

Submodel or SubmodelElement.

Reference to a referable, e.g. a data element

or a submodel, that is being observed.

ModelReference<Referable> 1

Direction Direction of event.

Can be { Input, Output }.

Direction 1

State State of event.

Can be { On, Off }.

StateOfEvent 1

messageTopic Information for the outer message

infrastructure for scheduling the event to the

respective communication channel.

string 0..1

messageBroker Information, which outer message

infrastructure shall handle messages for the

EventElement. Refers to a Submodel,

SubmodelElementList,

SubmodelElementCollection or Entity, which

contains DataElements describing the

proprietary specification for the message

broker.

Note: for different message infrastructure,
e.g. OPC UA or MQTT or AMQP, this
proprietary specification could be
standardized by having respective
Submodels.

ModelReference<Referable> 0..1

lastUpdate Timestamp in UTC, when the last event was

received (input direction) or sent (output

direction).

dateTime 0..1

minInterval For input direction, reports on the maximum

frequency, the software entity behind the

respective Referable can handle input

events.

For output events, specifies the maximum

frequency of outputting this event to an outer

infrastructure.

Might be not specified, that is, there is no

minimum interval.

dateTime 0..1

maxInterval For input direction: not applicable. dateTime 0..1

Page 66 of 235 | PART 1

Class: BasicEventElement

For output direction: maximum interval in

time, the respective Referable shall send an

update of the status of the event, even if no

other trigger condition for the event was not

met.

Might be not specified, that is, there is no

maximum interval.

Enumeration: Direction

Explanation: Direction

Set of: --

Literal Explanation

input Input direction.

output Output direction.

Enumeration: StateOfEvent

Explanation: State of an event

Set of: --

Literal Explanation

on Event is on.

off Event is off.

Events sent or received by AAS always comply to a general format. Exception: events exchanged in the course

of an Industrie 4.0 interaction pattern.

In the following the payload of such an event is specified.

Note: the payload is not part of the information model as exchanged via the AASX package format but used in re-
active Asset Administration Shells.

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 67 of 235

Class: EventPayload

Explanation: Defines the necessary information of an event instance sent out or received.

Inherits from: -

Attribute

Explanation Type Card.

source Reference to the source event element,

including identification of AAS,

Submodel, SubmodelElements.

ModelReference<Referable> 1

sourceSemanticId semanticId of the source event element,

if available

It is recommended to use a global
reference.

Reference 0..1

observableReference Reference to the referable, which

defines the scope of the event.

Can be AssetAdministrationShell,

Submodel or SubmodelElement.

ModelReference<Referable> 1

observableSemanticId semanticId of the referable which

defines the scope of the event, if

available.

It is recommended to use a global
reference.

Reference 0..1

Figure 30 Metamodel Event Payload

Page 68 of 235 | PART 1

Class: EventPayload

topic Information for the outer message

infrastructure for scheduling the event to

the respective communication channel.

string 0..1

subjectId Subject, who/which initiated the

creation.

This is a global reference.

Reference 0..1

timestamp Timestamp in UTC, when this event was

triggered.

dateTimeStamp 1

payload Event specific payload. string 0..1

For more information on the concept of subject see Clause 7 on Attribute Based Access Control (ABAC).

5.7.7.3 Blob Attributes

 Figure 31 Metamodel of Blobs

For information on content type see Clause 5.7.7.8 on submodel element “File”.

Class: Blob

Explanation: A BLOB is a data element that represents a file that is contained with its source code

in the value attribute.

Inherits from: DataElement

Attribute Explanation Type Card.

value The value of the BLOB instance of a blob data element.

Note: In contrast to the file property the file content is
stored directly as value in the Blob data
element.

BlobType 0..1

contentType Content type of the content of the BLOB.

The content type (MIME type) states which file

extensions the file can have.

Valid values are content types like e.g.

“application/json”, “application/xls”, ”image/jpg”

The allowed values are defined as in RFC2046.

ContentType 1

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 69 of 235

5.7.7.4 Capability Attributes

Figure 32 Metamodel of Capabilities

Class: Capability

Explanation: A capability is the implementation-independent description of the potential of an

asset to achieve a certain effect in the physical or virtual world.

Inherits from: SubmodelElement

Attribute Explanation Type Card.

Note: The semanticId of a capability is typically an ontology. Thus, reasoning on capabilities is enabled.

For information and examples how to apply the concept of capability and how to map it to one or more skills

implementing the capability please refer to [36]. The mapping is done via a relationship element with the

corresponding semantics. A skill is typically a property or an operation. In more complex cases the mapping

can also be a collection or a complete submodel.

5.7.7.5 Data Element and Overview of Data Element Types

Figure 33 Metamodel of Data Elements

A data element is a submodel element that is not further composed out of other submodel elements.

A data element is a submodel element that has a value or a predefined number of values like range data

elements.

A controlled value is a value whose meaning is given in an external source (see “ISO/TS 29002-10:2009(E)”).

Page 70 of 235 | PART 1

The type of value differs for different subtypes of data elements. Data Elements include properties and file

handling and reference elements, see Figure 33.

Class: DataElement <<abstract>>

Explanation: A data element is a submodel element that is not further composed out of other

submodel elements.

A data element is a submodel element that has a value. The type of value differs for

different subtypes of data elements.

Constraint AASd-090: For data elements category (inherited by Referable) shall be

one of the following values: CONSTANT, PARAMETER or VARIABLE. Default:

VARIABLE

Inherits from: SubmodelElement

Attribute Explanation Type Card.

5.7.7.6 Entity Attributes

Figure 34 Metamodel of Entities

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 71 of 235

Class: Entity

Explanation: An entity is a submodel element that is used to model entities.

Constraint AASd-014: Either the attribute globalAssetId or specificAssetId of an

Entity must be set if Entity/entityType is set to “SelfManagedEntity”. They are not

existing otherwise.

Inherits from: SubmodelElement

Attribute Explanation Type Card.

statement Describes statements applicable to the entity by a

set of submodel elements, typically with a qualified

value.

SubmodelElement 0..*

entityType Describes whether the entity is a co-managed

entity or a self-managed entity.

EntityType 1

globalAssetId Global identifier of the asset the entity is

representing.

This is a global reference.

Reference 0..1

specificAssetId Reference to a specific asset ID representing a

supplementary identifier of the asset represented

by the Asset Administration Shell.

SpecificAssetId 0..1

Enumeration: EntityType

Explanation: Enumeration for denoting whether an entity is a self-managed entity

or a co-managed entity.

Set of: --

Literal Explanation

CoManagedEntity For co-managed entities there is no separate AAS. Co-managed

entities need to be part of a self-managed entity.

SelfManagedEntity Self-Managed Entities have their own AAS but can be part of the bill

of material of a composite self-managed entity.

The asset of an I4.0 Component is a self-managed entity per

definition.

Page 72 of 235 | PART 1

5.7.7.7 Event Attributes

Figure 35 Metamodel of Events

Class: EventElement <<abstract>>

Explanation: An event element.

Inherits from: SubmodelElement

Attribute Explanation Type Card.

5.7.7.8 File Attributes

Figure 36 Metamodel of File Submodel Element

A media type (also MIME type and content type) […] is a two-part identifier for file formats and format contents

transmitted on the Internet. The Internet Assigned Numbers Authority (IANA) is the official authority for the

standardization and publication of these classifications. Media types were originally defined in Request for

Comments 2045 in November 1996 as a part of MIME (Multipurpose Internet Mail Extensions) specification,

for denoting type of email message content and attachments.12

Class: File

Explanation: A File is a data element that represents an address to a file (a locator). The value is

an URI that can represent an absolute or relative path.

Inherits from: DataElement

Attribute Explanation Type Card.

value Path and name of the file (with file extension).

The path can be absolute or relative.

PathType 0..1

contentType Content type of the content of the file. ContentType 1

12 Wikipedia.org, date: 2018-04-09

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 73 of 235

Class: File

The content type states which file extensions the

file can have.

For handling of supplementary external files in exchanging AAS specification in AASX package format see

also Clause 8.3 Conventions for the Asset Administration Shell Package File Format (AASX). An absolute

path is used in the case that the file exists independently of the AAS. A relative path, relative to the package

root should be used if the file is part of the serialized package of the AAS.

5.7.7.9 Multi Language Property Attributes

Figure 37 Metamodel of Multi Language Properties

Class: MultiLanguageProperty

Explanation: A property is a data element that has a multi-language value.

Constraint AASd-012: If both, the MultiLanguageProperty/value and the

MultiLanguageProperty/valueId are present then for each string in a specific

language the meaning must be the same as specified in

MultiLanguageProperty/valueId.

Inherits from: DataElement

Attribute Explanation Type Card.

value The value of the property instance. LangStringSet 0..1

valueId Reference to the global unique ID of a coded

value.

It is recommended to use a global reference.

Reference 0..1

Page 74 of 235 | PART 1

5.7.7.10 Operation Attributes

Figure 38 Metamodel of Operations

Class: Operation

Explanation: An operation is a submodel element with input and output variables.

Inherits from: SubmodelElement

Attribute Explanation Type Card.

inputVariable Input parameter of the operation. OperationVariable 0..*

outputVariable Output parameter of the operation. OperationVariable 0..*

inoutputVariable Parameter that is input and output of the

operation.

OperationVariable 0..*

Class: OperationVariable

Explanation: The value of an operation variable is a submodel element that is used as input

and/or output variable of an operation.

Inherits from:

Attribute Explanation Type Card.

value Describes an argument or result of an

operation via a submodel element

SubmodelElement 1

Note: Operations typically specify the behavior of a component in terms of procedures. Hence, operations enable
the specification of services with procedure-based interactions [32].

Note: OperationVariable is introduced as separate class to enable future extensions, e.g. for adding a default value,
cardinality (option/mandatory).

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 75 of 235

5.7.7.11 Property Attributes

Figure 39 Metamodel of Properties

Class: Property

Explanation: A property is a data element that has a single value.

Constraint AASd-007: If both, the Property/value and the Property/valueId are

present then the value of Property/value needs to be identical to the value of the

referenced coded value in Property/valueId.

Inherits from: DataElement

Attribute Explanation Type Card.

valueType Data type of the value DataTypeDefXsd 1

value The value of the property instance. ValueDataType 0..1

valueId Reference to the global unique ID of a coded

value.

It is recommended to use a global reference.

Reference 0..1

Page 76 of 235 | PART 1

5.7.7.12 Range Attributes

Figure 40 Metamodel of Ranges

Class: Range

Explanation: A range data element is a data element that defines a range with min and max.

Inherits from: DataElement

Attribute Explanation Type Card.

valueType Data type of the min und max DataTypeDefXsd 1

min The minimum value of the range.

If the min value is missing, then the value is

assumed to be negative infinite.

ValueDataType 0..1

max The maximum value of the range.

If the max value is missing, then the value

is assumed to be positive infinite.

ValueDataType 0..1

5.7.7.13 Reference Element Attributes

Figure 41 Metamodel of Reference Elements

Class: ReferenceElement

Explanation: A reference element is a data element that defines a logical reference to another

element within the same or another AAS or a reference to an external object or

entity.

Inherits from: DataElement

Attribute Explanation Type Card.

value Global reference to an external object or entity or a

logical reference to another element within the same

Reference 0..1

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 77 of 235

Class: ReferenceElement

or another AAS (i.e. a model reference to a

Referable).

For more information on references see Clause 5.7.9.

5.7.7.14 Relationship Element Attributes

Figure 42 Metamodel of Relationship Elements

.

Class: RelationshipElement

Explanation: A relationship element is used to define a relationship between two elements being either

referable (model reference) or external (global reference).

Inherits

from:

SubmodelElement

Attribute Explanation Type Card.

first Reference to the first element in the relationship taking the role

of the subject.

Reference 1

second Reference to the second element in the relationship taking the

role of the object.

Reference 1

Page 78 of 235 | PART 1

5.7.7.15 Submodel Element Collection Attributes

Figure 43 Metamodel of Submodel Element Collections

Submodel Element Collections are used for entities with a fixed set of properties with unique names within the

struct. Each property within the collection should have a clearly defined semantics. A property of a struct can

be any submodel element with a value.

It is not required that the different elements of a submodel element struct have different semanticIds. However, in
these cases the usage of a SubmodelElementList should be considered.

Example: For an asset there typically are many different documents available like the operating instructions,

the safety instructions etc. Each single document has a predefined set of predefined properties like title,

version, author etc. They logically belong to a document. So a single document is represented by a

SubmodelElementCollection. The set of all documents is represented by a SubmodelElementList. So in this

example we have a SubmodelElementList of SubmodelElementCollections.

 Class: SubmodelElementCollection

Explanation: A submodel element collection is a kind of struct, i.e. a logical encapsulation of multiple

named values. It has a fixed number of submodel elements.

Inherits from: SubmodelElement

Attribute Explanation Type Card.

value Submodel element contained in the collection. SubmodelElement 0..*

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 79 of 235

5.7.7.16 Submodel Element List Attributes

Figure 44 Metamodel of Submodel Element Lists

Submodel Element Lists are used for sets (i.e. unordered collections without duplicates), ordered lists (i.e.

ordered collections that may contain duplicates), bags (i.e. unordered collections that may contain duplicates)

as well as for ordered sets (i.e. ordered collections without duplicates). They are realized via ordered

collections of submodel elements.

Submodel Element Lists are also used to create multi-dimensional arrays. For a two-dimensional array list[3][5]

with Property values it would be realized like this: The first submodel element list would contain 3

SubmodelElementList elements. In each of these 3 SubmodelElementList 5 single Property elements would

be contained. The semanticId of the contained properties would be the same for all lists in the first list, i.e.

semanticIdListElement would be identical for all three lists contained in the first list. The semanticId of the three

contained lists would differ depending on the dimension it represents. In case of complex values in the array

a SubmodelElementCollection would be used as values in the leaf lists.

Similarly a table with 3 columns can be represented. In this case a SubmodelElementCollection with 3

SubmodelElementLists would be contained. In this case the semanticId as well as the semanticIdListElement

for the three columns differ.

See Clause 5.4.6 matching strategies for semantic ids are explained.

Page 80 of 235 | PART 1

Class: SubmodelElementList

Explanation: A submodel element list is an ordered list of submodel elements.

The numbering starts with Zero (0).

Constraint AASd-107: If a first level child element in a

SubmodelElementList has a semanticId it shall be identical to

SubmodelElementList/semanticIdListElement.

Constraint AASd-114: If two first level child elements in a

SubmodelElementList have a semanticId then they shall be identical.

Constraint AASd-115: If a first level child element in a

SubmodelElementList does not specify a semanticId then the value is

assumed to be identical to SubmodelElementList/semanticIdListElement.

Constraint AASd-108: All first level child elements in a

SubmodelElementList shall have the same submodel element type as

specified in SubmodelElementList/typeValueListElement.

Constraint AASd-109: If SubmodelElementList/typeValueListElement

equal to Property or Range SubmodelElementList/valueTypeListElement

shall be set and all first level child elements in the SubmodelElementList

shall have the value type as specified in

SubmodelElementList/valueTypeListElement.

Inherits from: SubmodelElement

Attribute Explanation Type Card.

orderRelevant Defines whether order in list is relevant. If

orderRelevant = False then the list is

representing a set or a bag.

Default: True

boolean 0..1

value Submodel element contained in the list. SubmodelElement 0..*

semanticIdListElement Semantic ID the submodel elements

contained in the list match to.

It is recommended to use a global
reference.

Reference 0..1

typeValueListElement The submodel element type of the

submodel elements contained in the list.

SubmodelElementE

lements

1

valueTypeListElement The value type of the submodel element

contained in the list.

DataTypeDefXsd 0..1

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 81 of 235

5.7.8 Concept Description Attributes

Figure 45 Metamodel of Concept Descriptions

Class: ConceptDescription

Explanation: The semantics of a property or other elements that may have a semantic description is

defined by a concept description.

The description of the concept should follow a standardized schema (realized as data

specification template).

Constraint AASd-051: A ConceptDescription shall have one of the following categories:

VALUE, PROPERTY, REFERENCE, DOCUMENT, CAPABILITY, RELATIONSHIP,

COLLECTION, FUNCTION, EVENT, ENTITY, APPLICATION_CLASS, QUALIFIER,

VIEW. Default: PROPERTY.

Inherits from: Identifiable; HasDataSpecification

Attribute Explanation Type Card.

isCaseOf Reference to an external definition the concept is compatible

to or was derived from.

It is recommended to use a global reference.

Note: Compare to is-case-of relationship in ISO 13584-32 &
IEC EN 61360

Reference 0..*

Different types of submodel elements require different attributes for describing the semantics of them. This is

why a concept description has at least one data specification template associated with it. Within this template

the attributes needed to define the semantics are defined.

See Clause 5.7.12.3 for predefined data specification templates to be used.

Page 82 of 235 | PART 1

5.7.9 Environment

Note w.r.t. file exchange: There is exactly one environment independent on how many files the contained elements
are splitted. If the file is splitted then there shall be no element with the same identifier in two different files.

Class: Environment

Explanation: Container for the sets of different identifiables.

Inherits from: Reference

Attribute Explanation Type Card.

assetAdministrationShell Asset administration shell AssetAdministrationShell 0..*

submodel Submodel Submodel 0..*

conceptDescription Concept description ConceptDescription 0..*

5.7.10 Referencing in Asset Administration Shells

5.7.10.1 Overview

Up to now two kinds of references are distinguished: references to external objects or entities (global reference)

and references to model element of the same or another Asset Administration Shell (model reference). Model

references are also used for meta model inherent relationships like submodels of an AssetAdministrationShell

etc. (notation see Annex C).

A global reference is a unique identifier. The identifier can be a concatenation of different identifiers, for

example representing an IRDI path etc.

Note: References should not be mixed up with locators. Even URLs (URL = uniform resource locator) can be used
as identifiers and do not necessarily describe a resource that can be accessed.

Figure 46 Metamodel for Environment

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 83 of 235

5.7.10.2 Reference Attributes

Figure 47 Metamodel of Reference

Class: Reference

Explanation: Reference to either a model element of the same or another AAS or to an external

entity. A reference is an ordered list of keys.

A model reference is an ordered list of keys, each key referencing an element.

The complete list of keys may for example be concatenated to a path that then

gives unique access to an element.

A global reference is a reference to an external entity.

Inherits from: --

Attribute Explanation Type Card.

type Type of the reference.

Denotes, whether reference is a global

reference or a model reference.

ReferenceTypes 1

referredSemanticId SemanticId of the referenced model element

(Reference/type=ModelReference). For

global references there typically is no

semantic ID.

It is recommended to use a global reference.

Reference 0..1

key <<ordered>> Unique reference in its name space. Key 1..*

5.7.10.3 Key Attributes

In Figure 48 a logical model of key types is presented. Depending on the context different enumerations can

be derived. In the context of references the enumeration is “KeyTypes”.

Page 84 of 235 | PART 1

Figure 48 Logical Model for Keys of References

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 85 of 235

Figure 49 Metamodel of KeyTypes Enumeration

Class: Key

Explanation: A key is a reference to an element by its ID.

Inherits from: --

Attribute Explanation Type Card.

type Denotes which kind of entity is referenced.

In case type = FragmentId the key represents a

bookmark or a similar local identifier within its

parent element as specified by the key that

precedes this key.

In all other cases the key references a model

element of the same or of another AAS. The name

of the model element is explicitly listed.

KeyElements 1

value The key value, for example an IRDI or an URI string 1

Example for using a FragmentId as type of a key: a reference to an element within a file that is part of an Asset

Administration Shell aasx package.

Page 86 of 235 | PART 1

Enumeration: KeyTypes

Explanation: Enumeration of different key value types within a key.

Set of: FragementKeys, GloballyIdentifiables

Literal Explanation

Referable Referable

Note: Referable is abstract, i.e. if a key uses “Referable” the reference
may be an Asset Administration Shell, a Property etc.

FragmentReference Bookmark or a similar local identifier of a subordinate part of a primary

resource

GlobalReference Global reference

AssetAdministrationShell Asset administration shell

ConceptDescription Concept Description

Identifiable Identifiable

Note: Identifiable is abstract, i.e. if a key uses “Identifiable” the
reference may be an Asset Administration Shell, a Submodel or
a Concept Description.

Submodel Submodel

AnnotatedRelationshipElement Annotated relationship element

BasicEventElement Basic event element

Blob Blob

Capability Capability

DataElement Data Element.

Note: Data Element is abstract, i.e. if a key uses “DataElement” the
reference may be a Property, a File etc.

Entity Entity

EventElement Event

Note: Event element is abstract.

File File

MultiLanguageProperty Property with a value that can be provided in multiple languages

Operation Operation

Property Property

Range Range with min and max

ReferenceElement Reference

RelationshipElement Relationship

SubmodelElement Submodel element

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 87 of 235

Enumeration: KeyTypes

Explanation: Enumeration of different key value types within a key.

Set of: FragementKeys, GloballyIdentifiables

Literal Explanation

Note: Submodel Element is abstract, i.e. if a key uses
“SubmodelElement” the reference may be a Property, a
SubmodelElementList, an Operation etc.

SubmodelElementCollection Struct of submodel elements

SubmodelElementList List of submodel elements

Enumeration: FragmentKeys

Explanation: Enumeration of different fragment key value types within a key.

Set of: AASReferableNonIdentifiables, GenericFragmentKeys

Literal Explanation

FragmentReference Bookmark or a similar local identifier of a subordinate part of a primary

resource

AnnotatedRelationshipElement Annotated relationship element

BasicEventElement Basic event element

Blob Blob

Capability Capability

DataElement Data Element.

Note: Data Element is abstract, i.e. if a key uses “DataElement” the
reference may be a Property, a File etc.

Entity Entity

EventElement Event

Note: Event element is abstract.

File File

MultiLanguageProperty Property with a value that can be provided in multiple languages

Operation Operation

Property Property

Range Range with min and max

ReferenceElement Reference

RelationshipElement Relationship

SubmodelElement Submodel element

Page 88 of 235 | PART 1

Enumeration: FragmentKeys

Explanation: Enumeration of different fragment key value types within a key.

Set of: AASReferableNonIdentifiables, GenericFragmentKeys

Literal Explanation

Note: Submodel Element is abstract, i.e. if a key uses
“SubmodelElement” the reference may be a Property, a
SubmodelElementList, an Operation etc.

SubmodelElementCollection Struct of submodel elements

SubmodelElementList List of submodel elements

Enumeration: GloballyIdentifiables

Explanation: Enumeration of different key value types within a key.

Set of: AASIdentifiables, GenericGloballyIdentifiables

Literal Explanation

GlobalReference Global reference

AssetAdministrationShell Asset administration shell

ConceptDescription Concept Description

Identifiable Identifiable

Note: Identifiable is abstract, i.e. if a key uses “Identifiable” the
reference may be an Asset Administration Shell, a Submodel or
a Concept Description.

Submodel Submodel

Enumeration: AasReferableNonIdentifiables

Explanation: Enumeration of different fragment key value types within a key.

Set of: AasSubmodelElements

Literal Explanation

AnnotatedRelationshipElement Annotated relationship element

BasicEventElement Basic event element

Blob Blob

Capability Capability

DataElement Data Element.

Note: Data Element is abstract, i.e. if a key uses “DataElement” the
reference may be a Property, a File etc.

Entity Entity

EventElement Event

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 89 of 235

Enumeration: AasReferableNonIdentifiables

Explanation: Enumeration of different fragment key value types within a key.

Set of: AasSubmodelElements

Literal Explanation

Note: Event element is abstract.

File File

MultiLanguageProperty Property with a value that can be provided in multiple languages

Operation Operation

Property Property

Range Range with min and max

ReferenceElement Reference

RelationshipElement Relationship

SubmodelElement Submodel element

Note: Submodel Element is abstract, i.e. if a key uses
“SubmodelElement” the reference may be a Property, a
SubmodelElementList, an Operation etc.

SubmodelElementCollection Struct of submodel elements

SubmodelElementList List of submodel elements

Enumeration: AasSubmodelElements

Explanation: Enumeration of different fragment key value types within a key.

Set of: --

Literal Explanation

AnnotatedRelationshipElement Annotated relationship element

BasicEventElement Basic event element

Blob Blob

Capability Capability

DataElement Data Element.

Note: Data Element is abstract, i.e. if a key uses “DataElement” the
reference may be a Property, a File etc.

Entity Entity

EventElement Event

Note: Event element is abstract.

Page 90 of 235 | PART 1

Enumeration: AasSubmodelElements

Explanation: Enumeration of different fragment key value types within a key.

Set of: --

Literal Explanation

File File

MultiLanguageProperty Property with a value that can be provided in multiple languages

Operation Operation

Property Property

Range Range with min and max

ReferenceElement Reference

RelationshipElement Relationship

SubmodelElement Submodel element

Note: Submodel Element is abstract, i.e. if a key uses
“SubmodelElement” the reference may be a Property, a
SubmodelElementList, an Operation etc.

SubmodelElementCollection Struct of submodel elements

SubmodelElementList List of submodel elements

Enumeration: AasReferables

Explanation: Enumeration of referables

Set of: AasReferableNonIdentifiables, AasIdentifiables

Literal Explanation

Referable Referable

Note: Referable is abstract, i.e. if a key uses “Referable” the reference
may be an Asset Administration Shell, a Property etc.

AssetAdministrationShell Asset administration shell

ConceptDescription Concept Description

Identifiable Identifiable

Note: Identifiable is abstract, i.e. if a key uses “Identifiable” the
reference may be an Asset Administration Shell, a Submodel or
a Concept Description.

Submodel Submodel

AnnotatedRelationshipElement Annotated relationship element

BasicEventElement Basic event element

Blob Blob

Capability Capability

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 91 of 235

Enumeration: AasReferables

Explanation: Enumeration of referables

Set of: AasReferableNonIdentifiables, AasIdentifiables

Literal Explanation

DataElement Data Element.

Note: Data Element is abstract, i.e. if a key uses “DataElement” the

reference may be a Property, a File etc.

Entity Entity

EventElement Event

Note: Event element is abstract.

File File

MultiLanguageProperty Property with a value that can be provided in multiple languages

Operation Operation

Property Property

Range Range with min and max

ReferenceElement Reference

RelationshipElement Relationship

SubmodelElement Submodel element

Note: Submodel Element is abstract, i.e. if a key uses

“SubmodelElement” the reference may be a Property, a

SubmodelElementList, an Operation etc.

SubmodelElementCollection Struct of submodel elements

SubmodelElementList List of submodel elements

Enumeration: GenericFragmentKeys

Explanation: Enumeration of different fragment key value types within a key.

Set of: --

Literal Explanation

FragmentReference Bookmark or a similar local identifier of a subordinate part of a primary

resource

Enumeration: AasIdentifiables

Explanation: Enumeration of different key value types within a key.

Set of: --

Literal Explanation

AssetAdministrationShell Asset administration shell

ConceptDescription Concept Description

Page 92 of 235 | PART 1

Enumeration: AasIdentifiables

Explanation: Enumeration of different key value types within a key.

Set of: --

Literal Explanation

Identifiable Identifiable

Note: Identifiable is abstract, i.e. if a key uses “Identifiable” the
reference may be an Asset Administration Shell, a Submodel or
a Concept Description.

Submodel Submodel

Enumeration: GenericGloballyIdentifiables

Explanation: Enumeration of different key value types within a key.

Set of: --

Literal Explanation

GlobalReference Global reference

5.7.10.4 Constraints

Constraint AASd-121: For References the type of the first key of Reference/keys shall be one of

GloballyIdentifiables.

Constraint AASd-122: For global references, i.e. References with Reference/type = GlobalReference, the type

of the first key of Reference/keys shall be one of GenericGloballyIdentifiables.

Constraint AASd-123: For model references, i.e. References with Reference/type = ModelReference, the type

of the first key of Reference/keys shall be one of AasIdentifiables.

Constraint AASd-124: For global references, i.e. References with Reference/type = GlobalReference, the last

key of Reference/keys shall be either one of GenericGloballyIdentifiables or one of GenericFragmentKeys.

Constraint AASd-125: For model references, i.e. References with Reference/type = ModelReference, with

more than one key in Reference/keys the type of the keys following the first key of Reference/keys shall be

one of FragmentKeys.

Note: Constraint AASd-125 ensures that the shortest path is used.

Constraint AASd-126: For model references, i.e. References with Reference/type = ModelReference, with

more than one key in Reference/keys the type of the last Key in the reference key chain may be one of

GenericFragmentKeys or no key at all shall have a value out of GenericFragmentKeys.

Constraint AASd-127: For model references, i.e. References with Reference/type = ModelReference, with

more than one key in Reference/keys a key with type FragmentReference shall be preceded by a key with

type File or Blob. All other AAS fragments, i.e. type values out of AasSubmodelElements, do not support

fragments.

Note: Which kind of fragments are supported depends on the content type and the specification of allowed fragment
identifiers for the corresponding resource being referenced via the reference.

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 93 of 235

Constraint AASd-128: For model references, i.e. References with Reference/type = ModelReference, the

Key/value of a Key preceded by a Key with Key/type=SubmodelElementList is an integer number denoting the

position in the array of the submodel element list.

Examples for valid references:

(Submodel)http://example.com/aas/1/1/1234859590

(GlobalReference)http://example.com/specification.html

Examples for valid global references:

(GlobalReference)http://example.com/ressource

(GlobalReference)0173-1#02-EXA123#001

(GlobalReference)http://example.com/specification.html (FragmentReference)Hints

Note: (GlobalReference)http://example.com/specification.html (FragmentReference)Hints represents the path with
fragment identifier http://example.com/specification.html#Hints

Examples for valid model references:

(AssetAdministrationShell)http://example.com/aas/1/0/12348

(Submodel)http://example.com/aas/1/1/1234859590

(Submodel)http://example.com/aas/1/1/1234859590, (File)Specification

(ConceptDescription)0173-1#02-BAA120#008

(Submodel)http://example.com/aas/1/1/1234859590, (SubmodelElementList)Documents,

(SubmodelElementCollection)0, (MultiLanguageProperty)Title

(Submodel)http://example.com/aas/1/1/1234859590, (SubmodelElementCollection)Manual,

(MultiLanguageProperty)Title

Note: (SubmodelElementCollection)0, (MultiLanguageProperty)Title may be semantically and content-wise identical to

(SubmodelElementCollection)Manual, (MultiLanguageProperty)Title. The difference is that in the first submodels

more than one document is allowed and thus a submodel element list is defined: elements in a list are
numbered. However, it is possible to define a display name also in this case. So the display name of the
SubmodelElementCollection should be the same in both bases, e.g. “Users Manual”.

(Submodel)http://example.com/aas/1/1/1234859590, (File)Specification, (FragmentReference)Hints

Assuming the File has the value using the absolute path (and not a relative path)
http://example.com/specification.html then the first reference points to the same information as the global
reference (GlobalReference)http://example.com/specification.html, (FragmentReference)Hints .

(Submodel)http://example.com/aas/1/1/1234859590, (Blob)Specification, (FragmentReference)Hints

Examples for invalid model references:

(GlobalReference)http://example.com/aas/1/1/1234859590

(Property)0173-1#02-BAA120#008

(Submodel)http://example.com/aas/1/1/1234859590, (EventElement)Event, (FragmentReference)Comment

Page 94 of 235 | PART 1

(AssetAdministrationShell)http://example.com/aas/1/0/12348,

 (Submodel)http://example.com/aas/1/1/1234859590, (Property)Temperature

is not a valid model reference because AssetAdministrationShell and Submodel both are globally

identifiables.

5.7.10.5 Matching Algorithm for References

In Clause 5.4.6 matching strategies for semantic identifiers were discussed. In this Clause matching strategies

based on the reference concept is explained in more details and thus also covers other kind of identifying

elements.

For examples the string serialization of references as defined in Clause 9.2.3 is used for easier understanding.

Exact match:

• A global reference A matches a global reference B if all values of all keys are identical. Note: it is

assumed as unlikely that a fragment value is identical to a global reference value and thus references

something different.

• A model reference A matches a model reference B if all values of all keys are identical.

Note: the key type can be ignored since the fragment keys are always unique (e.g. all idShorts of

Submodel elements in a submodel or all submodel elements in a submodel element list or collection).

• A global reference A matches a model reference B and vice versa if all values of all keys are identical.

Note: Since Identifiables of the AAS are globally unique, model references are special cases of global

references. The only difference is the handling of key types that are predefined for AAS element. Other

key types could be predefined, e.g. for IRDI paths etc. but so far only generic key types are supported.

Note: If the key types are not identical although all key values are following the correct order of the key chain then
at least of the references is buggy and a warning should be raised.

5.7.11 Templates, Inheritance, Qualifiers and Categories

On a first glance there seem to be some overlapping between the concept of data specification templates,

extensions, inheritance, qualifiers and categories. In this clause the commonalities and differences are

explained and hints for good practices are given.

In general extension of the metamodel by inheritance is foreseen. As an alternative also templates might be

used.

• Extensions can be used to add proprietary and/or temporary information to an element. Extensions do

not support interoperability. They can be used as work-around for missing properties in the standard.

In this case the same extensions are attaches to all elements of a specific class (e.g. to Properties).

However, in general extensions can be attached in a quite arbitrary way. Properties are defined in a

predefined way as key values pairs (key named “name” in this case).

• Templates in contrast to extensions aim to enable interoperability between the partners that agree on

the template. Templates should only be used if different instances of the class follow different schemas

and the templates for the schemas are not known at design time of the metamodel. Templates might

also be used if the overall metamodel is not yet stable enough or a tool does support templates but

not (yet) the complete metamodel. Typically all instances of a specific class having the same category

provide the same attribute values conformant to the template. In contrast to extensions the attributes

in the template have speaking names.

• However: when using non-standardized proprietary data specification templates interoperability

cannot be ensured and thus should be avoided whenever possible.

• In case all instances of a class follow the same schema then inheritance and/or categories should be

used.

• Categories can be used if all instances of a class follow the same schema but have different constraints

depending on its category. Such a constraint might specify that an optional attribute is mandatory for

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 95 of 235

this category (like for example the unit that is mandatory for properties representing physical values).

Realizing the same via inheritance would lead to multiple inheritance what is to be omitted13.

• Qualifiers are used if the structure and its semantics of the element is the same independent of its

qualifiers. It is only the quality or the meaning of the value for the element that differs.

5.7.12 Primitive and Simple Data Types

5.7.12.1 Predefined Simple Data Types

The metamodel of the Asset Administration Shell uses the following basic data types as defined in the XML

Schema Definition (XSD)14. Their definition is outside the scope of this document.

The meaning and format of xsd types is specified in https://www.w3.org/XML/Schema. The simple type

“langString” is specified in the Resource Description Framework (RDF)15.

Source Basic Data Type Value Range Sample Values

xsd string Character string (but not all Unicode character

strings)

"Hello world", "Καλημέρα κόσμε", "

コンニチハ"

xsd boolean true, false true, false

xsd byte -128…+127 (8 bit) -1, 0, 127

rdf langString Strings with language tags "Hello"@en, "Hallo"@de. Note that

this is written in RDF/Turtle syntax,

and that only "Hello" and "Hallo"

are the actual values.

Simple data types start with a small letter.

In addition to these types there is a special handling of data elements with varying types (i.e. with primitive

data type “ValueDataType”). They are discussed in Clause 5.7.12.2 and Clause 5.7.12.3.

5.7.12.2 Primitive Data Types

Types that are used for specific data specification templates are listed in the corresponding clause of the data

specification.

Table 6 lists the Primitives used in the metamodel. Primitive data types start with a capital letter.

Table 6 Primitive DataTypes Used in Metamodel

Primitive Explanation Value Examples

BlobType Group of bytes

 to represent file content

(binaries and non-binaries)

<?xml version="1.0" encoding="UTF-8"?>

<schema elementFormDefault="qualified"

targetNamespace="http://www.admin-shell.io/aas/2/0"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:aas="http://www.admin-shell.io/aas/2/0"

xmlns:abac="http://www.admin-shell.io/aas/abac/2/0"

xmlns:IEC61360="http://www.admin-shell.io/IEC61360/2/0">

 <import namespace="http://www.admin-shell.io/aas/abac/2/0"

schemaLocation="AAS_ABAC.xsd"/>

13 Exception: In this specification multiple inheritance is used but only in case of inheriting from abstract

classes.

14 https://www.w3.org/XML/Core/, former https://www.w3.org/XML/Schema

15 see: https://www.w3.org/TR/rdf11-concepts/

https://www.w3.org/XML/Schema
https://www.w3.org/XML/Core/
https://www.w3.org/XML/Schema
https://www.w3.org/TR/rdf11-concepts/

Page 96 of 235 | PART 1

Primitive Explanation Value Examples

MZ•_________ÿÿ__¸_______@_____________

______________________€_____º__´

 Í!¸_LÍ!This program cannot be run in

DOS

mode.$_______PE__L___Rö\^________à_

Identifier string https://cust/123456

0173-1#02-BAA120#008

LangStringSet Array of elements of type

langString

langString is a RDF data
type.

A langString is a string
value tagged with
a language code.

It depends on the serialization

rules for a technology how this is

realized.

In xml:

<aas:langString lang=”EN”>This is a multi-language value in

English</aas:langString>

<aas:langString lang=”DE”> Das ist ein Multi-Language-Wert in Deutsch

</aas:langString>

In rdf:

“This is a multi-language value in English”@en ;

“Das ist ein Multi-Language-Wert in Deutsch”@de

In JSON:

 {

 "language":"EN",

 "text":" This is a multi-language value in English."

 }

 {

 "language":"DE",

 "text":" Das ist ein Multi-Language-Wert in Deutsch."

 }

ContentType string

Any content type as in
RFC2046.

A media type (also MIME type

and content type) […] is a two-

part identifier for file formats and

format contents transmitted on

the Internet. The Internet

Assigned Numbers Authority

(IANA) is the official authority for

the standardization and

publication of these

classifications. Media types were

originally defined in Request for

application/pdf

image/jpeg

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 97 of 235

Primitive Explanation Value Examples

Comments 2045 in November

1996 as a part of MIME

(Multipurpose Internet Mail

Extensions) specification, for

denoting type of email message

content and attachments.16

PathType string

Any string conformant to
RFC808917, the
“file” URI scheme
(for relative and
absolute file paths)

./Specification.pdf

file:c:/local/Specification.pdf

file://host.example.com/path/to/file

QualifierType string ExpressionSemantic

life cycle qual

ValueDataType any xsd atomic type as specified

via DataTypeDefXsd

“This is a string value”

10

1.5

2020-04-01

True

5.7.12.3 Enumeration for Submodel Element Value Types

Enumerations are primitive data types. Most of the enumerations are defined in the context of the class they

are used. In this clause enumerations for submodel element value types18 are defined.

The predefined types used to define the type of values of properties and other values use the names and the

semantics of XML Schema Definition (XSD)19. Additionally, the type “langString” with the semantics as defined

in the Resource Description Framework (RDF)20 is used. “langString” is a string value tagged with a language

code.

RDF21 recommends to not use the following xsd data types. This is, why they are excluded from the allowed data
types.

• XSD BuildIn List Types are not supported (ENTITIES, IDREFS and NMTOKENS).

• XSD string BuildIn Types are not supported (normalizedString, token, language, NCName, ENTITY, ID,
IDREF).

• The following XSD primitive types are not supported: NOTATION, QName.

16 Wikipedia.org, date: 2018-04-09

17 https://datatracker.ietf.org/doc/html/rfc8089

18 E.g. Property/valueType

19 See https://www.w3.org/XML/Schema

20 see: https://www.w3.org/TR/rdf11-concepts/

21 See https://www.w3.org/TR/rdf11-concepts/#xsd-datatypes

https://datatracker.ietf.org/doc/html/rfc8089
https://www.w3.org/XML/Schema
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/#xsd-datatypes

Page 98 of 235 | PART 1

Note: The following RDF types are not supported: HTML and XMLLiteral.

Example values and the value range of the different data types are given in Table 7. The left column “Data

Type” shows the data types which can be used for submodel element values. The data types are defined

according to the W3C XML Schema (https://www.w3.org/TR/xmlschema-2/#built-in-datatypes and

https://www.w3.org/TR/xmlschema-2/#built-in-derived). “Value Range” further explains the possible range of

data values for this data type. In the right column are related examples for values of the corresponding data

type.

Figure 50 DataTypeDefXsd Enumeration

Figure 51 DefTypeDefRdf Enumeration

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 99 of 235

Table 7 Data Types with Examples22

 Data Type Value Range Sample Values

Core

Types

xs:string Character string (but

not all Unicode

character strings)

"Hello world", "Καλημέρα κόσμε", "コン

ニチハ"

xs:boolean true, false true, false

xs:decimal Arbitrary-precision

decimal numbers

-1.23,

126789672374892739424.543233,

+100000.00, 210

xs:integer Arbitrary-size integer

numbers

-1, 0,

1267896754323329387928374298374

29837429, +100000

IEEE-

floating-

point

numbers

xs:double 64-bit floating point

numbers incl. ±Inf, ±0,

NaN

-1.0, +0.0, -0.0, 234.567e8, -INF, NaN

xs:float 32-bit floating point

numbers incl. ±Inf, ±0,

NaN

-1.0, +0.0, -0.0, 234.567e8, -INF, NaN

Time and

data

xs:date Dates (yyyy-mm-dd)

with or without

timezone

"2000-01-01","2000-01-01Z", "2000-

01-01+12:05"

xs:time Times

(hh:mm:ss.sss…) with

or without timezone

"14:23:00", "14:23:00.527634Z",

"14:23:00+03:00"

xs:dateTime Date and time with or

without timezone

"2000-01-01T14:23:00", "2000-01-

01T14:23:00.66372+14:00"

xs:dateTimeStamp Date and time with

required timezone

"2000-01-01T14:23:00.66372+14:00"

Recurring

and

partial

dates

xs:gYear Gregorian calendar

year

"2000", "2000+03:00"

xs:gMonth Gregorian calendar

month

"--04", "--04+03:00"

xs:gDay Gregorian calendar

day of the month

"---04", "---04+03:00"

xs:gYearMonth Gregorian calendar

year and month

"2000-01", "2000-01+03:00"

xs:gMonthDay Gregorian calendar

month and day

"--01-01", "--01-01+03:00"

xs:duration Duration of time "P30D", "-P1Y2M3DT1H",

"PT1H5M0S"

xs:yearMonthDuration Duration of time

(months and years

only)

"P10M", 'P5Y2M"

xs:dayTimeDuration Duration of time (days,

hours, minutes,

seconds only)

"P30D", 'P1DT5H", 'PT1H5M0S"

xs:byte -128…+127 (8 bit) -1, 0, 127

22 See list of RDF-compatible XSD types with short description https://www.w3.org/TR/rdf11-concepts/#xsd-

datatypes. Examples from https://openmanufacturingplatform.github.io/sds-bamm-aspect-meta-model/bamm-

specification/v1.0.0/datatypes.html

https://www.w3.org/TR/rdf11-concepts/#xsd-datatypes
https://www.w3.org/TR/rdf11-concepts/#xsd-datatypes
https://openmanufacturingplatform.github.io/sds-bamm-aspect-meta-model/bamm-specification/v1.0.0/datatypes.html
https://openmanufacturingplatform.github.io/sds-bamm-aspect-meta-model/bamm-specification/v1.0.0/datatypes.html

Page 100 of 235 | PART 1

Limited-

range

integer

numbers

xs:short -32768…+32767 (16

bit)

-1, 0, 32767

xs:int 2147483648…+21474

83647 (32 bit)

-1, 0, 2147483647

xs:long -

922337203685477580

8…+92233720368547

75807 (64 bit)

-1, 0, 9223372036854775807

xs:unsignedByte 0…255 (8 bit) 0, 1, 255

xs:unsignedShort 0…65535 (16 bit) 0, 1, 65535

xs:unsignedInt 0…4294967295 (32

bit)

0, 1, 4294967295

xs:unsignedLong 0…184467440737095

51615 (64 bit)

0, 1, 18446744073709551615

xs:positiveInteger Integer numbers >0 1,

7345683746578364857368475638745

xs:nonNegativeInteger Integer numbers ≥0 0, 1,

7345683746578364857368475638745

xs:negativeInteger Integer numbers <0 -1, -

2348726384762837648273648726384

7

xs:nonPositiveInteger Integer numbers ≤0 -1, 0, -

93845837498573987498798987394

Encoded

binary

data

xs:hexBinary Hex-encoded binary

data

"6b756d6f77617368657265"

xs:base64Binary Base64-encoded

binary data

"a3Vtb3dhc2hlcmU="

Miscellan

eous

types

xs:anyURI Absolute or relative

URIs and IRIs

"http://customer.com/demo/aas/1/1/12

34859590",

"urn:example:company:1.0.0"

rdf:langString Strings with language

tags

"Hello"@en, "Hallo"@de. Note that this

is written in RDF/Turtle syntax, and that

only "Hello" and "Hallo" are the actual

values.

Enumeration: DataTypeDefXsd

Explanation: Enumeration listing all xsd anySimpleTypes

For more details see https://www.w3.org/TR/rdf11-

concepts/#xsd-datatypes

Set of: DecimalBuildInTypes, durationBuildInTypes, PrimitiveTypes

Literal Explanation

xs:integer see: https://www.w3.org/TR/xmlschema11-2/#integer

xs:long see: https://www.w3.org/TR/xmlschema11-2/#long

xs:int see: https://www.w3.org/TR/xmlschema11-2/#int

xs:short see: https://www.w3.org/TR/xmlschema11-2/#short

xs:byte see: https://www.w3.org/TR/xmlschema11-2/#byte

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 101 of 235

Enumeration: DataTypeDefXsd

xs:nonNegativeInteger see: https://www.w3.org/TR/xmlschema11-

2/#nonNegativeInteger

xs:positiveInteger see: https://www.w3.org/TR/xmlschema11-

2/#positiveInteger

xs:unsignedLong see: https://www.w3.org/TR/xmlschema11-

2/#unsignedLong

xs:unsignedInt see: https://www.w3.org/TR/xmlschema11-2/#unsignedInt

xs:unsignedShort see: https://www.w3.org/TR/xmlschema11-

2/#unsignedShort

xs:unsignedByte see: https://www.w3.org/TR/xmlschema11-

2/#unsignedShort

xs:nonPositiveInteger see: https://www.w3.org/TR/xmlschema11-

2/#nonPositiveInteger

xs:negativeInteger see: https://www.w3.org/TR/xmlschema11-

2/#negativeInteger

xs:daytimeDuration see: https://www.w3.org/TR/xmlschema11-

2/#dayTimeDuration

xs:yearMonthDuration see: https://www.w3.org/TR/xmlschema11-

2/#yearMonthDuration

xs:anyURI see: https://www.w3.org/TR/xmlschema-2/#anyURI

xs:base64Binary see: https://www.w3.org/TR/xmlschema-2/#base64Binary

xs:boolean see: https://www.w3.org/TR/xmlschema-2/#boolean

xs:date see: https://www.w3.org/TR/xmlschema-2/#date

xs:dateTime see: https://www.w3.org/TR/xmlschema-2/#dateTime

xs:decimal see: https://www.w3.org/TR/xmlschema-2/#decimal

xs:double see: https://www.w3.org/TR/xmlschema-2/#double

xs:duration see: https://www.w3.org/TR/xmlschema-2/#duration

xs:float see: https://www.w3.org/TR/xmlschema-2/#float

xs:gDay see: https://www.w3.org/TR/xmlschema-2/#gDay

xs:gMonth see: https://www.w3.org/TR/xmlschema-2/#gMonth

xs:gMonthDay see: https://www.w3.org/TR/xmlschema-2/#gMonthDay

xs:gYear see: https://www.w3.org/TR/xmlschema-2/#gYear

xs:gYearMonth see: https://www.w3.org/TR/xmlschema-2/#gYearMonth

xs:hexBinary see: https://www.w3.org/TR/xmlschema-2/#hexBinary

xs:string see: https://www.w3.org/TR/xmlschema-2/#string

xs:time see: https://www.w3.org/TR/xmlschema-2/#time

Enumeration: decimalBuildInTypes

Page 102 of 235 | PART 1

Explanation: Enumeration listing all xsd build in decimal types

Set of: --

Literal Explanation

xs:integer see: https://www.w3.org/TR/xmlschema11-2/#integer

xs:long see: https://www.w3.org/TR/xmlschema11-2/#long

xs:int see: https://www.w3.org/TR/xmlschema11-2/#int

xs:short see: https://www.w3.org/TR/xmlschema11-2/#short

xs:byte see: https://www.w3.org/TR/xmlschema11-2/#byte

xs:nonNegativeInteger see: https://www.w3.org/TR/xmlschema11-2/#nonNegativeInteger

xs:positiveInteger see: https://www.w3.org/TR/xmlschema11-2/#positiveInteger

xs:unsignedLong see: https://www.w3.org/TR/xmlschema11-2/#unsignedLong

xs:unsignedInt see: https://www.w3.org/TR/xmlschema11-2/#unsignedInt

xs:unsignedShort see: https://www.w3.org/TR/xmlschema11-2/#unsignedShort

xs:unsignedByte see: https://www.w3.org/TR/xmlschema11-2/#unsignedShort

xs:nonPositiveInteger see: https://www.w3.org/TR/xmlschema11-2/#nonPositiveInteger

xs:negativeInteger see: https://www.w3.org/TR/xmlschema11-2/#negativeInteger

Enumeration: durationBuildInTypes

Explanation: Enumeration listing all xsd build in types with respect to duration

Set of: --

Literal Explanation

xs:daytimeDuration see: https://www.w3.org/TR/xmlschema11-2/#dayTimeDuration

xs:yearMonthDuration see: https://www.w3.org/TR/xmlschema11-2/#yearMonthDuration

Enumeration: PrimitiveTypes

Explanation: Enumeration listing all xsd primitive types

Set of: --

Literal Explanation

xs:anyURI see: https://www.w3.org/TR/xmlschema-2/#anyURI

xs:base64Binary see: https://www.w3.org/TR/xmlschema-2/#base64Binary

xs:boolean see: https://www.w3.org/TR/xmlschema-2/#boolean

xs:date see: https://www.w3.org/TR/xmlschema-2/#date

xs:dateTime see: https://www.w3.org/TR/xmlschema-2/#dateTime

xs:decimal see: https://www.w3.org/TR/xmlschema-2/#decimal

xs:double see: https://www.w3.org/TR/xmlschema-2/#double

xs:duration see: https://www.w3.org/TR/xmlschema-2/#duration

xs:float see: https://www.w3.org/TR/xmlschema-2/#float

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 103 of 235

Enumeration: PrimitiveTypes

xs:gDay see: https://www.w3.org/TR/xmlschema-2/#gDay

xs:gMonth see: https://www.w3.org/TR/xmlschema-2/#gMonth

xs:gMonthDay see: https://www.w3.org/TR/xmlschema-2/#gMonthDay

xs:gYear see: https://www.w3.org/TR/xmlschema-2/#gYear

xs:gYearMonth see: https://www.w3.org/TR/xmlschema-2/#gYearMonth

xs:hexBinary see: https://www.w3.org/TR/xmlschema-2/#hexBinary

xs:string see: https://www.w3.org/TR/xmlschema-2/#string

xs:time see: https://www.w3.org/TR/xmlschema-2/#time

Enumeration: DataTypeDefRdf

Explanation: Enumeration listing all RDF types

Set of: --

Literal Explanation

rdf:langString String with a language tag

RDF requires IETF BCP 4723 language tags, i.e. simple two-letter language tags for Locales like “de”

conformant to ISO 639-1 are allowed as well as language tags plus extension like “de-DE” for country code,

dialect etc. like in “en-US” or “en-GB” for English (United Kingdom) and English (United States). IETF language

tags are referencing ISO 639, ISO 3166 and ISO 15924.

23 see https://tools.ietf.org/rfc/bcp/bcp47.txt

https://tools.ietf.org/rfc/bcp/bcp47.txt

Page 104 of 235 | PART 1

Figure 52 Built-In Types of XML Schema Definition 1.1 (XSD)

5.7.13 Cross Constraints and Invariants

5.7.13.1 Introduction

In this clause constraints that cannot be assigned to a single class, i.e. that are no class invariants, are

documented.

A class invariant is a constraint that must be true for all instances of a class at any time.

https://sunye.github.io/ocl/

METAMODEL SPECIFICATION DETAILS: DESIGNATORS (NORMATIVE) | Page 105 of 235

5.7.13.2 Constraints for Referables and Identifiables

Constraint AASd-002: idShort of Referables shall only feature letters, digits, underscore ("_"); starting

mandatory with a letter. I.e. [a-zA-Z][a-zA-Z0-9_]+.

Constraint AASd-117: idShort of non-identifiable Referables not equal to SubmodelElementList shall be

specified (i.e. idShort is mandatory for all Referables except for SubmodelElementLists and all Identifiables).

Constraint AASd-120: idShort of submodel elements within a SubmodelElementList shall not be specified.

Constraint AASd-022: idShort of non-identifiable referables shall be unique in its namespace.

Constraint AASd-003: idShort of Referables shall be matched case-sensitive.

5.7.13.3 Constraints for Qualifiers

Constraint AASd-021: Every qualifiable can only have one qualifier with the same Qualifier/type.

Constraint AASd-119: If any Qualifier/kind value of a Qualifiable/qualifier is equal to TemplateQualifier and the

qualified element inherits from “hasKind” then the qualified element shall be of kind Template (HasKind/kind =

"Template").

5.7.13.4 Constraints for Extensions

Constraint AASd-077: The name of an extension within HasExtensions needs to be unique.

5.7.13.5 Constraints for Asset Related Information

Constraint AASd-116: “globalAssetId” (case-insensitive) is a reserved key. If used as value for

SpecificAssetId/name SpecificAssetId/value shall be identical to AssetInformation/globalAssetId.

5.7.13.6 Constraints for Types

Constraint AASd-100: An attribute with data type "string" is not allowed to be empty.

Page 106 of 235 | PART 1

6 Predefined Data Specification Templates

GENERAL | Page 107 of 235

6.1 General

A data specification template serves to specify which additional attributes shall be added to an element

instance that are not part of the meta model. Typically, data specification templates have a specific scope. For

example, templates for concept descriptions differ from templates for operations etc. More than one data

specification template can be defined and used for an element instance. Which templates are used for an

element instance is defined via HasDataSpecification.

There are two data specification templates defined so far:

- One for defining concept descriptions for properties conformant to IEC61360

- And one for defining concept descriptions for physical units conformant to IEC61360

The template introduced for describing the concept of a property, a value list or a value is based on IEC 61360.

Figure 53 shows how concept descriptions and the predefined data specification templates are related to each

other.

Note: The abstract classes are numbered h0_, h1_ etc. but Aliases are defined for them without this prefix. The
reason for this naming is that in the tooling used for UML modelling (Enterprise Architect) no order for inherited
classes can be defined, they are ordered in an alphabetical way.

Page 108 of 235 | PART 1

Figure 53 Data Specification Template IEC61360

DATA SPECIFICATION TEMPLATE SPECIFICATION DETAILS: DESIGNATORS | Page 109 of 235

6.2 Data Specification Template Specification Details: Designators

6.2.1.1 Data Specification Template Attributes

Figure 54 Data Specification Templates

Note: The Data Specification Templates do not belong to the metamodel of the Asset Administration Shell. In
serializations that choose specific templates the corresponding data specification content may be directly
incorporated.

It is required that a data specification template has a global unique ID so that it can be referenced via

HasDataSpecification/dataSpecification.

A template consists of the DataSpecificationContent containing the additional attributes to be added to the

element instance that references the data specification template and meta information about the template

itself. In UML these are two separated classes.

Class: DataSpecification <<Template>>

Explanation: Data Specification Template

Inherits from: --

Attribute Explanation Type Card.

administration Administrative information of an

identifiable element.

Note: Some of the administrative

information like the version number might

need to be part of the identification.

AdministrativeInformation 0..1

id The globally unique identification of the

element.

Identifier 1

Page 110 of 235 | PART 1

Class: DataSpecification <<Template>>

dataSpecificationCont

ent

The content of the template without meta

data

DataSpecificationContent 1

description Description how and in which context the

data specification template is applicable.

The description can be provided in

several languages.

LangStringSet 0..1

Class: DataSpecificationContent <<Template>><<abstract>>

Explanation: Data specification content is part of a data specification template and defines which

additional attributes shall be added to the element instance that references the data

specification template and meta information about the template itself.

Inherits from: --

Attribute Explanation Type Card.

6.3 Predefined Template for IEC61360 Properties, Value Lists and Values

6.3.1 General

The data specification template IEC61360 introduces additional attributes to a concept description and defines

a property, a value list or a value based on IEC 61360.

Figure 55 to Figure 58 show examples from ECLASS, ECLASS following the IEC 61360 standard to give an

impression how it looks like in existing dictionaries.

PREDEFINED TEMPLATE FOR IEC61360 PROPERTIES, VALUE LISTS AND VALUES | Page 111 of 235

Figure 55 Example Property from ECLASS

Figure 56 Example Property Description with Value List from ECLASS

Figure 57 Example Value Description from ECLASS

class Data Specification conformant to IEC61360-1 2017-07 and ISO13584-42 2010-12-15

Page 112 of 235 | PART 1

Figure 58 Example Value Description from ECLASS Advanced

6.3.2 Overview of Data Specification Template IEC61360

Figure 60 shows how a the data specification template IEC61360 is used to describe additional attributes of a

concept description.

PREDEFINED TEMPLATE FOR IEC61360 PROPERTIES, VALUE LISTS AND VALUES | Page 113 of 235

Figure 59 Concept Descriptions for Properties Conformant to IEC61360

6.3.3 Data Specification IEC61360 Template Specification Details: Designators

6.3.3.1 Data Specification IEC61360 Template Attributes

Although the IEC61360 attributes listed in this template are defined for properties and values and value lists

only it is also possible to use the template for other definitions as long as no specific data specifications for

concept descriptions for these elements are available. This is shown in the tables Table 8, Table 9, Table 10

and Table 11.

Page 114 of 235 | PART 1

Figure 60 Metamodel of Data Specification IEC6136

Class: DataSpecificationIEC61360 <<Template>>

Explanation: Content of data specification template for concept descriptions for properties, values and

value lists conformant to IEC 61360.

Constraint AASc-010: If DataSpecificationIEC61360/value is not empty then

DataSpecificationIEC61360/valueList shall be empty and vice versa.

Constraint AASc-009: If DataSpecificationIEC61360/dataType one of:

INTEGER_MEASURE, REAL_MEASURE, RATIONAL_MEASURE,

INTEGER_CURRENCY, REAL_CURRENCY, then DataSpecificationIEC61360/unit or

DataSpecificationIEC61360/unitId shall be defined.

Inherits from: DataSpecificationContent

Attribute Explanation Type Card.

preferredName Preferred name LangStringSet 1

PREDEFINED TEMPLATE FOR IEC61360 PROPERTIES, VALUE LISTS AND VALUES | Page 115 of 235

Class: DataSpecificationIEC61360 <<Template>>

Constraint AASc-002: DataSpecification-

IEC61360/preferredName shall be provided at

least in English.

shortName Short name LangStringSet 0..1

unit Unit string 0..1

unitId

Unique unit ID

unit and unitId need to be consistent if both

attributes are set

It is recommended to use a global reference.

Although the unitId is a global reference there
might exist a ConceptDescription with data
specification
DataSpecificationPhysicalUnit with the
same ID.

Reference 0..1

sourceOf-

Definition

Source of definition string 0..1

symbol Symbol string 0..1

dataType Data Type DataTypeIEC61360 0..1

definition Definition in different languages LangStringSet 0..1

valueFormat Value Format string 0..1

valueList List of allowed values ValueList 0..1

value Value string 0..1

levelType Set of levels LevelType 0..1

Note: IEC61360 requires also a globally unique identifier for a concept description. This ID is not part of the data
specification template. Instead the ConceptDescription/id as inherited via Identifiable is used. Same holds for
administrative information like the version and revision.

ConceptDescription/idShort and DataSpecificationIEC61360/shortName are very similar. However, in this case the

decision was to add shortName explicitly to the data specification.
Same holds for ConceptDescription/displayName and DataSpecificationIEC61360/preferredName .
Same holds for ConceptDescription/description and DataSpecificationIEC61360/definition.

Enumeration: DataTypeIEC61360

Explanation: Enumeration of simple data types for a IEC61360 concept description

using the data specification template DataSpecificationIEC61360

Set of: --

Literal Explanation

Page 116 of 235 | PART 1

DATE values containing a calendar date, conformant to ISO 8601:2004

Format yyyy-mm-dd

Example from IEC 61360-1:2017: "1999-05-31" is the [DATE] representation

of: "31 May 1999".

STRING values consisting of sequence of characters but cannot be translated

into other languages

STRING_TRANSLATABLE values containing string but shall be represented as different string in

different languages

INTEGER_MEASURE values containing values that are measure of type INTEGER. In

addition such a value comes with a physical unit.

INTEGER_COUNT values containing values of type INTEGER but are no currencies or

measures

INTEGER_CURRENCY values containing values of type INTEGER that are currencies

REAL_MEASURE values containing values that are measures of type REAL. In addition

such a value comes with a physical unit.

REAL_COUNT values containing numbers that can be written as a terminating or
non-terminating decimal; a rational or irrational number but are no
currencies or measures

REAL_CURRENCY values containing values of type REAL that are currencies

BOOLEAN values representing truth of logic or Boolean algebra (TRUE, FALSE)

IRI values containing values of type STRING conformant to Rfc 3987

In IEC61360-1 (2017) only URI is supported. An IRI type allows in
particular to express an URL or an URI.

IRDI values conforming to ISO/IEC 11179 series global identifier
sequences

IRDI can be used instead of the more specific data types ICID or
ISO29002_IRDI.

ICID values are value conformant to an IRDI, where the delimiter
between RAI and ID is “#” while the delimiter between DI and VI is
confined to “##”

ISO29002_IRDI values are values containing a global identifier that
identifies an administrated item in a registry. The structure of this
identifier complies with identifier syntax defined in ISO/TS 29002-5.
The identifier shall fulfil the requirements specified in ISO/TS 29002-
5 for an "international registration data identifier" (IRDI).

RATIONAL values containing values of type rational

RATIONAL_MEASURE values containing values of type rational. In addition such a value

comes with a physical unit.

TIME values containing a time, conformant to ISO 8601:2004 but restricted

to what is allowed in the corresponding type in xml.

Format hh:mm (ECLASS)

Example from IEC 61360-1:2017: "13:20:00-05:00" is the [TIME]
representation of: 1.20 p.m. for Eastern Standard Time, which is 5
hours behind Coordinated Universal Time (UTC).

PREDEFINED TEMPLATE FOR IEC61360 PROPERTIES, VALUE LISTS AND VALUES | Page 117 of 235

TIMESTAMP values containing a time, conformant to ISO 8601:2004 but restricted

to what is allowed in the corresponding type in xml.

Format yyyy-mm-dd hh:mm (ECLASS)

FILE values containing an address to a file. The values are of type URI and

can represent an absolute or relative path.

IEC61360 does not support the file type.

HTML Values containing string with any sequence of characters, using the

syntax of HTML5 (see W3C Recommendation 28:2014)

BLOB values containing the content of a file. Values may be binaries.

HTML conformant to HTML5 is a special blob.

In IEC61360 binary is for a sequence of bits, each bit being

represented by “0” and “1” only. A binary is a blob but a blob may also

contain other source code.

“ValueList” lists all the allowed values for a concept description for which the allowed values are listed in an

enumeration. The value list is a set of value reference pairs.

Figure 61 ValueList

Class: ValueList

Explanation: A set of value reference pairs.

Inherits from: --

Attribute Explanation Type Card.

valueReferencePair A pair of a value together with its global unique

ID.

ValueReferencePair 1..*

Class: ValueReferencePair

Explanation: A value reference pair within a value list. Each value has a global unique ID defining

its semantic.

Page 118 of 235 | PART 1

Class: ValueReferencePair

Inherits from: --

Attribute Explanation Type Card.

value the value of the referenced concept

definition of the value in valueId.

string 1

valueId Global unique ID of the value.

It is recommended to use a global

reference.

Reference 1

A mapping of IEC61360 data types to xsd data types is provided here:
https://wiki.eclass.eu/wiki/Datatype_to_XSD_mapping 25:

IEC61360/ECLASS XSD

Integer (Measure) integer

Integer (count) integer

Integer (currency) integer

Real (measure) double

String translatable langString

Rational (measure) double

Rational (count) double

Real (count) double

Real (currency) double

Time Time

Date date

Timestamp dateTime

Boolean boolean

Url anyURI

6.3.3.2 Identifier for DataSpecificationIEC61360

Conformant to the rules in Clause 9.2.4 the following data specification template needs to be referenced via

the ID

 “https://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0”

24 Link not working any longer (access 2022-05-15)

25 Link not working any longer (access 2022-05-15)

https://wiki.eclass.eu/wiki/Datatype_to_XSD_mapping

PREDEFINED TEMPLATE FOR IEC61360 PROPERTIES, VALUE LISTS AND VALUES | Page 119 of 235

(in hasDataSpecification/dataSpecification).

This namespace has the qualifier “IEC:” Examples: IEC:DataSpecificationIEC61360/preferredName or IEC:

DataSpecificationIEC61360/levelType/Min or IEC:LevelType/Min

Note: The data specification template is not identical to the data specification content as shown in Figure 60.

6.3.4 Category of Concept Descriptions

For the meaning of the content attributes of the IEC61360 data specification template please refer to IEC

61360 and/or ECLASS.

The data specification template can be used to describe properties and values, both.

SeeFigure 59 for how data specification templates are related to concept descriptions (showing all inherited

attributes as well). In a similar way data specification templates for other elements in the information model

can be defined and used. In Figure 62 all used categories are listed.

The following tables recommend using specific categories to distinguish which kind of concept is described.

They also give advice which attributes need to be filled for which category of concept description.

These tables are not part of the specification because in a way the existing data specification template for describing
concept descriptions for properties and coded values is misused to also describe other concepts. In later
versions of the standards and this specification, there might be data specifications for concept descriptions
better suited for the purpose.

Figure 62 Categories of Concept Descriptions (non normative)

Page 120 of 235 | PART 1

Table 8 IEC61360 Data Specification Template for Properties and Ranges

A
ttrib

u
te

2
6

P
ro

p
e

rty

P
ro

p
e

rty

P
ro

p
e

rty

M
u

lti-

L
a

n
g

u
a

g
e

-

P
ro

p
e

rty

R
a

n
g

e

Category of Concept

Description

VALUE PROPERTY PROPE

RTY

PROPERTY PROPERTY

Category of Submodel-

Element

CONSTANT VARIABLE PARA

METER

-- --

preferredName27 m m m m m

shortName (m) (m) (m) (m) (m)

unit (m) (m) (m) -- (m)

unitId (m) (m) (m) -- (m)

sourceOfDefinition o o o o o

symbol o o o -- --

dataType m28 m29 m30 stringTranslatable integer* or real*

or rational*

definition (m) m m m m

valueFormat o o o -- o

valueList -- o o -- --

value m -- -- -- --

valueId o -- -- -- --

levelType -- -- -- -- {Min, Max}

26 m= mandatory, o = optional, (m) = conditionally mandatory or recommended to be added

27 Mandatory in at least one language. Preferrable an English preferred name should allways be defined.

28All data types except stringTranslatable, Iri, Irdi, file, blob, Icid and Iso29002Irdi.

29 All data types except stringTranslatable, Iri, Irdi, file, blob, Icid and Iso29002Irdi.

30 All data types except stringTranslatable, Iri, Irdi, file, blob, Icid and Iso29002Irdi..

PREDEFINED TEMPLATE FOR IEC61360 PROPERTIES, VALUE LISTS AND VALUES | Page 121 of 235

Table 9 IEC612360 Data Spec. Template for other Data Elements, Relationships Elements and

Capabilities

A
ttrib

u
te

3
1

R
e

fe
re

n
c

e
-

E
le

m
e

n
t

F
ile

3
2

B
lo

b
3

2

C
a

p
a

b
ility

3
2

R
e

la
tio

n
s
h

ip
-

E
le

m
e

n
t
3
2

A
n

n
o

ta
te

d
R

e
l

a
tio

n
s

h
ip

-

E
le

m
e

n
t
3
2

Category of

Concept

Description

REFERE

NCE

DOCUM

ENT

DOCUM

ENT

CAPABI

LITY

RELATI

ONSHIP

RELATI

ONSHIP

Category of

Submodel-

Element

-- -- -- -- -- --

preferredNam

e33

m m m m m m

shortName (m) (m) (m) (m) (m) (m)

unit -- -- -- -- -- --

unitId -- -- -- -- -- --

sourceOf-

Definition

o o o o o o

symbol -- -- -- -- -- --

dataType string or

Iri or Irdi

or Icid or

iso29002

Irdi

file blob or

html5

-- -- --

definition m m m m m m

valueFormat -- -- -- -- -- --

valueList -- -- -- -- -- --

value -- -- -- -- -- --

valueId -- -- -- -- -- --

levelType -- -- -- -- -- --

31 m= mandatory, o = optional, (m) = conditionally mandatory or recommended to be added

32 Template only used until explicit template for defining the corresponding types of elements are available.

33 Mandatory in at least one language. Preferrable an English preferred name should allways be defined.

Page 122 of 235 | PART 1

Table 10 IEC612360 Data Specification Template for other Submodel Elements

A
ttrib

u
te

S
u

b
m

o
d

e
lE

le
m

e
n

tL
is

t

S
u

b
m

o
d

e
lE

le
m

e
n

tC
o

lle

c
tio

n

O
p

e
ra

tio
n

3
2

E
v

e
n

tE
le

m
e

n
t

E
n

tity

Category of

Concept

Description

COLLECTION ENTITY FUNCTION EVENT ENTITY

Category of

Submodel-

Element

-- -- -- -- --

preferredName34 m m m m m

shortName (m) (m) (m) (m) (m)

unit -- -- -- -- --

unitId -- -- -- -- --

sourceOfDefinition o o o o o

symbol -- -- -- -- --

dataType -- -- -- -- --

definition m m m m m

valueFormat -- -- -- -- --

valueList -- -- -- -- --

value -- -- -- -- --

valueId -- -- -- -- --

levelType -- -- -- -- --

34 Mandatory in at least one language. Preferrable an English preferred name should allways be defined.

PREDEFINED TEMPLATES FOR UNIT CONCEPT DESCRIPTIONS | Page 123 of 235

Table 11 Other Elements with semanticId

A
ttrib

u
te

3
1

S
u

b
m

o
d

e
l

Q
u

a
lifie

r

category APPLICATION_CLASS QUALIFIER_TYPE

preferredName m m

shortName (m) (m)

unit -- --

unitId -- --

sourceOfDefinition o o

symbol -- --

dataType -- m

definition m m

valueFormat -- o

valueList -- o

value -- --

valueId -- --

levelType -- --

6.4 Predefined Templates for Unit Concept Descriptions

6.4.1 General

The data specification template IEC61360 introduces additional attributes to a concept description of a physical

unit and is based on IEC 61360.

Figure 63 shows and example from ECLASS, ECLASS following the IEC 61360 standard to give an impression

how it looks like in existing dictionaries.

Page 124 of 235 | PART 1

Figure 63 Example of a concept description for a unit: 1/min (from ECLASS)

class Data Specification Units conformant to IEC61360-1 and ISO13584-42 (NEW)

PREDEFINED TEMPLATES FOR UNIT CONCEPT DESCRIPTIONS | Page 125 of 235

6.4.2 Data Specification Physical Unit Template Specification Details: Designators

6.4.2.1 Data Specification Template Physical Unit Attributes

Figure 64 Metamodel of Data Specification Physical Unit

Class: DataSpecificationPhysicalUnit <<Template>>

Explanation: Content of data specification template for concept descriptions for physical units

conformant to IEC 61360.

Inherits from: DataSpecificationContent

Attribute Explanation Type Card.

unitName Name of the physical unit string 1

unitSymbol Symbol for the physical unit string 1

definition Definition in different languages LangStringSet 1

siNotation Notation of SI physical unit string 0..1

siName Name of SI physical unit string 0..1

dinNotation Notation of physical unit conformant to DIN string 0..1

eceName Name of physical unit conformant to ECE string 0..1

eceCode Code of physical unit conformant to ECE string 0..1

nistName Name of NIST physical unit string 0..1

sourceOfDefinition Source of definition string 0..1

conversionFactor Conversion factor string 0..1

registrationAuthorityId Registration authority ID string 0..1

Page 126 of 235 | PART 1

Class: DataSpecificationPhysicalUnit <<Template>>

supplier Supplier string 0..1

6.4.2.2 Identifier for Data Specification Physical Unit

Conformant to the rules in Clause 9.2.4 the following data specification template should be referenced via

the ID

“https://admin-shell.io/DataSpecificationTemplates/DataSpecificationPhysicalUnit/3/0/RC02”

(in hasDataSpecification/dataSpecification).

The recommendation is to use “IEC:” as namespace qualifier as already discussed in Clause 9.2.4.

Examples: IEC:DataSpecificationPhysicalUnit/unitName or IEC:DataSpecificationPhysicalUnit/definition

Units are used in data specification templates for properties when defining the unitId

(IEC:/DataSpecificationIEC61250/unitId, see Clause 6.3.3). The unit value corresponds then to the unitName

as specified in the concept description referenced via unitId.

The data specification template for concept descriptions for units (see Clause 6.4) is defined conformant to

IEC61360-1 and ISO13854-42 and is following the xml schema UnitML. An example unit is shown in Figure

63.

6.5 Cross Constraints and Invariants for Predefined Data Specifications

6.5.1 General

In this clause constraints in the context of the predefined data specifications that cannot be assigned to a

single class, i.e. that are no class invariants, are documented.

A class invariant is a constraint that must be true for all instances of a class at any time.

6.5.2 Constraints for DataSpecificationIEC61360

Constraint AASc-004: For a ConceptDescription with category PROPERTY or VALUE using data

specification template IEC61360 (http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/3/0/RC02) -

DataSpecificationIEC61360/dataType is mandatory and shall be one of: DATE, STRING,

STRING_TRANSLATABLE, INTEGER_MEASURE, INTEGER_COUNT, INTEGER_CURRENCY,

REAL_MEASURE, REAL_COUNT, REAL_CURRENCY, BOOLEAN, RATIONAL, RATIONAL_MEASURE,

TIME, TIMESTAMP.

Constraint AASc-005: For a ConceptDescription with category REFERENCE using data specification

template IEC61360 (http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/3/0/RC02)

- DataSpecificationIEC61360/dataType shall be one of: STRING, IRI, IRDI.

Constraint AASc-006: For a ConceptDescription with category DOCUMENT using data specification

template IEC61360 (http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/3/0/RC02)

- DataSpecificationIEC61360/dataType shall be one of: FILE, BLOB, HTML.

Constraint AASc-007: For a ConceptDescription with category QUALIFIER_TYPE using data specification

template IEC61360 (http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/3/0/RC02)

- DataSpecificationIEC61360/dataType is mandatory and shall be defined.

Constraint AASc-008: For a ConceptDescription except for a ConceptDescription of category VALUE using

data specification template IEC61360 (http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/3/0/RC02) -

DataSpecificationIEC61360/definition is mandatory and shall be defined at least in English.

https://sunye.github.io/ocl/

CROSS CONSTRAINTS AND INVARIANTS FOR PREDEFINED DATA SPECIFICATIONS | Page 127 of 235

Constraint AASc-003: For a ConceptDescription with category VALUE using data specification template

IEC61360 (http://admin-shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

DataSpecificationIEC61360/value shall be set.

Constraint AASd-050: If the DataSpecificationContent DataSpecificationIEC61360 is used for an element

then the value of HasDataSpecification/dataSpecification shall contain the global reference to the IRI of the

corresponding data specification template https://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/3/0/RC02.

6.5.3 Constraints for DataSpecificationPhysicalUnit

Constraint AASd-050b: If the DataSpecificationContent DataSpecificationPhysicalUnit is used for an

element then the value of HasDataSpecification/dataSpecification shall contain the global reference to the

IRI of the corresponding data specification template https://admin-

shell.io/DataSpecificationTemplates/DataSpecificationPhysicalUnit0/3/0/RC02.

Page 128 of 235 | PART 1

7 The Metamodel of the Asset Administration

Shell w.r.t. Security

7.1 General

As the AAS is a central point for data access, there is the need to support fine grained access control that

supports multiple roles as well as separate access control policies for individual nodes or submodels in the

AAS. Access Control is based on Identity Management and can only be successfully implemented in a secure

environment. These aspects as well as concepts to support data usage control and data provenance tracking

are going to be developed further in the future, hence not described in detail in this chapter. For this document,

the focus lies on the supported access control model.

7.2 Passing Access Permissions

When having a look at the leading picture (Figure 2 in Clause 4.2) also security aspects have to be considered

when transferring information from one value chain partner to the next.

When AAS content is passed from one partner to another, this is typically related to a change in the access

control domain of the partners involved (supplier, integrator, operator), i.e. the scope of the validity of access

control policies.

Therefore, for the example that the supplier passes on data to the integrator, the following typical steps are

carried out:

• Step A1-A2: The supplier makes a choice which data is to be passed on (see Clause 10), and thus

determines the content of the AASX package (see Clause 8).

• Step A2-A3: The AASX package is transferred to the integrator.

• Step A3-A4: The integrator receives the package and imports the content into his security domain.

During this step, the integrator has to establish access rights according to the requirements in his own

security domain.

ABAC is a very flexible approach, that also encompasses role-based access as a role can be considered as

one attribute in this context. Other attributes might be the time-of-day, the location of the asset, the originating

address and others.

In addition to the AAS content itself, also the defined access permissions have to be transferred between the

partners due to the following two reasons:

(1) Access permissions to information elements of an AAS must be established in each access control

domain.

(2) One partner must be able to pass a suggestion which access permissions should be established for

the asset that is described in the AAS.

An example for the requirement (2):

A robot manufacturer suggests that for the robot the following roles shall be defined: machine setter,

operator and a maintenance role. Note that the roles have to be expressed by means of attributes of the

AAS representing the robot. He also suggests permissions for these roles, e.g. an installer (integrator) does

have write-access to the program of the robot, but an operator does not.

The above example motivates that the access permission rules need to be passed from one access control

domain to the other. The passing on of the access permission rules is implemented by following means:

• Definition of access permissions: The detailed access permissions (e.g. read, write, delete, create,

invoke method etc.) are defined in a domain specific submodel (see AccessControl/defaultPermissions

and AccessControl/selectablePermissions in Clause 7.4.4).

• Definition of the access permission rules, based on the defined access permissions. These are defined

as part of access control (see Clause 7.4.4).

OVERVIEW METAMODEL OF ADMINISTRATION SHELL W.R.T. SECURITY | Page 129 of 235

• Association of access permission rules to each information element (object) of the AAS. This means

is realized by the information structure of the AAS itself (see PermissionsPerObject in Clause 7.4.5).

Effective access permissions are determined based on the access permission rules. Each submodel element

in the AAS shall have rules that define its access permissions for each subject. The subject is assumed to be

already authenticated.

If a submodel element does not have these rules, it will automatically use the table for the element where it is

included (“inheritance from above"). The most upper object is the AAS itself, i.e. the AAS is the starting point

for the inheritance.

As indicated before, subject identification, rule definitions and also permissions could be different for the

receiving party as it may be in a different access control domain. When the receiving party establishes access

permissions during step A3-A4, it must merge the passed-on access definitions (permissions and access

permission rules) to the existing definitions in its access control domain.

In [19] examples and more background information on attribute access control and access control in general

can be found. The classes and their attributes are defined in Clause 7.4.

7.3 Overview Metamodel of Administration Shell w.r.t. Security

Security-related attributes related to access control are part of the AAS information model. The objective of

access control is to protect system resources (here: AAS content) against unauthorized access. The protection

measures are specified in access control policies whose scope of validity is defined by security domains

dedicated to access control.

Note: The implementation of access control in an I4.0 System needs support by dedicated infrastructure services,
e.g. for identity management, digital certificate management, authentication and access control enforcement.

The underlying concept applied for access control is the concept of attribute-based access control (ABAC). In

general, the ABAC request flow is described in [22]. Originally, ABAC relies upon the data-flow model and

language model of the OASIS eXtensible Access Control Markup Language (XACML) specifications [54].

OASIS XACML includes concepts such as:

• Policy administration point (PAP): The system entity that creates a policy set.

• Policy decision point (PDP): The system entity that evaluates an applicable policy and renders an

authorization decision.

• Policy enforcement point (PEP): The system entity that performs access control, by making decision

requests and enforcing authorization decisions.

• Policy information point (PIP): The system entity that acts as a source of attribute values.

The general request flow is depicted in Figure 65:

• A subject is requesting access to an object (1). In the context of an AAS, an object is typically a

submodel or a property or any other submodel element connected to the asset.

• The implemented access control mechanism of the AAS evaluates the access permission rules (2a)

that include constraints that need to be fulfilled w.r.t. the subject attributes (2b), the object attributes

(2c) and the environment conditions (2d).

• After the evaluation a decision is taken and enforced upon the object (3), i.e. the access to the

submodel element is permitted or declined.

Page 130 of 235 | PART 1

Figure 65 Attribute Based Access Control [22]

Note: Attribute in the context of ABAC is different from attributes of elements as defined in the metamodel.

In Figure 66 an overview of the information model of the AAS w.r.t. security aspects is given.

An object in the context of ABAC corresponds typically to a submodel or to a submodel element. The object

attributes again are modelled as submodel elements.

Subject Attributes need to be accessed either via an external policy information point (PIP) or they are defined

as properties within a special submodel of the AAS. A typical subject attribute is its role. The role is the only

subject attribute defined when ABAC is applied as role-based access control.

Optionally, environment conditions can be defined. In role-based access control, no environment conditions

are defined. Environment conditions can be expressed via formula constraints. To be able to do so the values

needed should be defined as property or reference to data within a submodel of the AAS.

OVERVIEW METAMODEL OF ADMINISTRATION SHELL W.R.T. SECURITY | Page 131 of 235

 Figure 66 Metamodel Overview for Access Control

By means of access control policies (e.g. in terms of access permission rules), it is defined which subject is

allowed to access which objects35 within the AAS. It is assumed that the subject is already authenticated.

Objects can be any referable elements, i.e. they include identifiables like submodels and concept descriptions

. More general it can be specified whether an authenticated subject is allowed or denied accessing an object

a.s.o. “Access” might be one of the specified permissions on an element of the AAS. Which permissions are

selectable is not defined by the metamodel of the AAS. The selectable permissions are defined via a submodel

(AccessControl/selectablePermissions). The same holds for the subject attributes

(AccessControl/selectableSubjectAttributes). The default subject attributes and default permissions are used

if they are not overwritten by the owner of the AAS. As for permissions the used authenticated subject attributes

are defined in submodel AccessControl/selectableSubjectAttributes.

Access rights may be constrained further. For example, a policy rule may specify that the role “maintenance

engineer” (to be more precise: an authenticated subject with subject attribute “role = ‘maintenance engineer’”)

is only allowed to write configuration parameters if the machine (the asset) is not running. See Figure 73 in

Clause 5.7.2.7 for a formal expression of this access rule based on the property “Status”.

35 The term “object” is used because it is more generic and in future also other objects like for example

attributes of classes may be included besides elements.

Page 132 of 235 | PART 1

Object Attributes are handled in a different way. It is assumed that any property of the object in focus can

additionally take over the role of an object attribute. Therefore, there is no special submodel for default or

selectable object attributes.

Figure 67 gives an overview of all elements defined for security issues in the metamodel.

Figure 67 Security Overview Packages

7.4 Metamodel Specification Details: Designators

7.4.1 Introduction

In this clause the classes of the metamodel related to security are specified in detail. It is an extension of the

metamodel as described in Clause 5.7.

For understanding the extension the basics and common abstract classes need to be understood (see

especially Clause 5.7.2, Clause 5.7.9 and Clause 5.7.10.4).

7.4.2 Security Attributes

Figure 68 Metamodel of Security Attributes of AAS

Class: Security

Explanation: Container for security relevant information of AAS.

Inherits from: --

Attribute Explanation Type Card.

accessControlPolicyPoints Access control policy points of

AAS.

AccessControlPolicyPoi

nts

1

METAMODEL SPECIFICATION DETAILS: DESIGNATORS | Page 133 of 235

7.4.3 Access Control Policy Point Attributes

Figure 69 Metamodel of Access Control Policy Points

Class: AccessControlPolicyPoints

Explanation: Container for access control policy points.

Inherits from: --

Attribute Explanation Type Card.

policyAdministrationPoint The access control administration policy

point of AAS.

AccessControl 1

The definition of the Policy Administration point is taken from [22]. The PAP is responsible for managing

administering policies and also includes access control for the policies itself. Policies are deployed to the PDP

for evaluation of access control decisions.

Page 134 of 235 | PART 1

7.4.4 Access Control Attributes

Figure 70 Metamodel of Access Control

Class: AccessControl

Explanation: Access Control defines the local access control policy administration

point.

Access Control has the major task to define the access permission rules.

Inherits from: --

Attribute Explanation Type Card.

accessPermissionRule Access permission rules of the AAS

describing the rights assigned to

(already authenticated) subjects to

access elements of the AAS.

AccessPermissionRule 0..*

selectableSubjectAttributes Reference to a submodel defining

the authenticated subjects that are

configured for the AAS. They are

selectable by the access permission

rules to assign permissions to the

subjects.

Default: reference to the submodel

referenced via

defaultSubjectAttributes.

ModelReference<Sub

model>

0..1

defaultSubjectAttributes Reference to a submodel defining

the default subjects’ attributes for

the AAS that can be used to

describe access permission rules.

The submodel is of kind=Template.

ModelReference<Sub

model>

1

METAMODEL SPECIFICATION DETAILS: DESIGNATORS | Page 135 of 235

Class: AccessControl

selectablePermissions Reference to a submodel defining

which permissions can be assigned

to the subjects.

Default: reference to the submodel

referenced via defaultPermissions

ModelReference<Sub

model>

0..1

defaultPermissions Reference to a submodel defining

the default permissions for the AAS.

ModelReference<Sub

model>

1

selectableEnvironmentAttributes Reference to a submodel defining

which environment attributes can be

accessed via the permission rules

defined for the AAS, i.e. attributes

that are not describing the asset

itself.

Default: reference to the submodel

referenced via

defaultEnvironmentAttributes

ModelReference<Sub

model>

0..1

defaultEnvironmentAttributes Reference to a submodel defining

default environment attributes, i.e.

attributes that are not describing the

asset itself.

The submodel is of kind=Template.

At the same type the values of these

environment attributes need to be

accessible when evaluating the

access permission rules. This is

realized as a policy information

point.

ModelReference<Sub

model>

0..1

Page 136 of 235 | PART 1

7.4.5 Access Permission Rule Attributes

Figure 71 Metamodel of Access Permission Rule

Class: AccessPermissionRule

Explanation: Table that defines access permissions per authenticated subject for a set

of objects (referable elements).

Inherits from:

Attribute Explanation Type Card.

targetSubjectAttributes Target subject attributes that need

to be fulfilled by the accessing

subject to get the permissions

defined by this rule.

SubjectAttributes 1

permissionsPerObject Set of object-permission pairs that

define the permissions per object

within the access permission rule.

PermissionsPerObje

ct

0..*

constraint Constraint that needs to be

validated to true so that access

permission rule holds.

Formula 0..1

Class: PermissionsPerObject

Explanation: Table that defines access permissions for a specified object. The object is any

referable element in the AAS. Additionally, object attributes can be defined that

further specify the kind of object the permissions apply to.

Inherits from: --

Attribute Explanation Type Card.

METAMODEL SPECIFICATION DETAILS: DESIGNATORS | Page 137 of 235

Class: PermissionsPerObject

object Element to which permission shall be

assigned.

ModelReference<Referable> 1

targetObjectAttributes Target object attributes that need to

be fulfilled so that the access

permissions apply to the accessing

subject.

ObjectAttributes 0..1

permission Permissions assigned to the object.

The permissions hold for all subjects

as specified in the access permission

rule.

Permission 0..*

Class: ObjectAttributes

Explanation: A set of data elements that describe object attributes. These attributes need to refer to a

data element within an existing submodel.

Inherits from: --

Attribute Explanation Type Card.

objectAttribute Reference to a data element that further

classifies an object.

ModelReference<DataElement> 1..*

Class: Permission

Explanation: Description of a single permission.

Inherits from: --

Attribute Explanation Type Card.

permission Reference to a property that defines the

semantics of the permission.

ModelReference<Property> 1

kindOfPermission Description of the kind of permission.

Possible kind of permission also include

the denial of the permission.

Values:

• Allow

• Deny

• NotApplicable

• Undefined

PermissionKind 1

Class: SubjectAttributes

Explanation: A set of data elements that further classifies a specific subject.

Inherits from: --

Page 138 of 235 | PART 1

Class: SubjectAttributes

Attribute Explanation Type Card.

subjectAttribute A data element that further classifies a

specific subject.

DataElement 1..*

Enumeration: PermissionKind

Explanation: Enumeration of the kind of permissions that is given to the assignment of a

permission to a subject.

Set of: --

Literal Explanation

Allow Allow the permission given to the subject.

Deny Explicitly deny the permission given to the subject.

NotApplicable The permission is not applicable to the subject.

Undefined It is undefined whether the permission is allowed, not applicable or denied to the

subject.

7.4.6 Formula Attributes

Figure 72 Metamodel of Formulas

A formula may depend on referables that are used in the logical expression.

The value of the referenced elements needs to be accessible so that it can be evaluated in the formula to true

or false in the corresponding logical expression it is used in.

In Figure 73 an example for a formula depending on the property “Status” is shown. However, up to now no

formula language is defined for the AAS so the example is just showing one of the possibilities using a xsd

mixed-Content Type and an attribute “depends” to describe which property values are needed to formulate the

rule.

Note: With this exemplary mechanism it is not possible so far to formulate formulas containing complex objects (e.g.
submodel element collections or relationship elements). It is restricted to data elements or other elements for
which there is a serialization as a string available and defined.

METAMODEL SPECIFICATION DETAILS: DESIGNATORS | Page 139 of 235

Figure 73 Example Formula “Machine Status not Running” (non normative)

<aas:Formula>

 <aas:dependsOn>

 <Keys>

 <Key type=”Submodel”>https://myShell/Machine</Key>

 <Key type=”Property”>Status</Key> </Keys>

 </aas:dependsOn> != RUNNING

</aas:Formula>

Class: Formula <<abstract>>

Explanation: A formula is used to describe constraints by a logical expression.

Inherits from:

Attribute Explanation Type Card.

7.4.7 Cross Constraints and Invariants

In this clause constraints that cannot be assigned to a single class, i.e. that are no class invariants, are

documented.

A class invariant is a constraint that must be true for all instances of a class at any time.

Constraint AASs-010: The property referenced in Permission/permission shall have the category

“CONSTANT”.

Constraint AASs-011: The property referenced in Permission/permission shall be part of the submodel that is

referenced within the “selectablePermissions” attribute of “AccessControl”.

Constraint AASs-015: Every data element in SubjectAttributes/subjectAttributes shall be part of the submodel

that is referenced within the “selectableSubjectAttributes” attribute of “AccessControl”.

https://sunye.github.io/ocl/

Page 140 of 235 | PART 1

8 Package File Format for the Asset

Administration Shell (AASX)

BASIC CONCEPTS OF THE OPEN PACKAGING CONVENTIONS | Page 141 of 235

8.1 General

In some use cases it is necessary to exchange the full or partial structure of the Asset Administration Shell

with or without associated values and/or make the information persistent (e.g. store it in a file server). This

would mean that it is necessary to define a file format that can hold and store this information. Therefore, a

package file format for the Asset Administration Shell (AASX) is defined based on the following requirements:

• Generic package file format to include the Asset Administration Shell structure, data and other related

files

• Main use cases are the exchange between organizations/partners and storage/persistency of the

Asset Administration Shells’ information.

• Without any legal restriction and no royalties. Preferably based on an international standard with high

guarantees of future maintainability of that format

• Existence of APIs to create, read and write this format

• Digital signatures & encryption capabilities must be provided

• Policies for authenticity and integration of package files36

The following process in Figure 74 is defined for creating and consuming AASX packages.

Figure 74 Process for generating and consuming AASX packages

The process starts by serializing the existing AAS (e.g. D1 and E1) into files (according to the serialization

mechanisms described in this document), as well as exporting other supplementary files (which are files

mentioned in the structure of the AAS, such as manuals, CAD files, etc.). All of these files will be packaged

together into the AASX ZIP file format and will be followed by several security steps that defines the policies

for modifiability, encryption and digitally signing of the files inside the AASX. The final AASX can then be

transported from the AASX producer (in this case partner A) to the AASX consumer (partner B), by digital

media such as e-mail, USB-Sticks, etc. The consumer needs first to validate and verify the incoming AASX,

unpack the contained files and then import them to generate the new AAS in the consumer environment. The

process will be explained in detail in the following sub-sections.

8.2 Basic Concepts of the Open Packaging Conventions

The packaging model specified by the Open Packaging Conventions describes packages, parts, and

relationships. Packages hold parts, which hold content and resources, such as files37. Every file in a package

36 Role-based policies to access this package is not defined, as this is a feature of the systems that host the

AASs (see section 7)

37 The term “file” will be used instead of “part”.

D1/E1

AAS D1

User of
partner "A"

AAS Env ironment / Hosting

E
x
p
o
rt

Pack

Transport

AAS E1

System boundary - I4.0 infrastructure of partner "A"

Serialized files
Suppl. files

Package Secure
Package

Secure

Policies
Encrypt
Sign

AAS D1

User of
partner “B"

AAS Env ironment / Hosting

Im
p
o
rt

Unpack

AAS E1

System boundary - I4.0 infrastructure of partner “B"

Secure
Package

Validation

Serialized files
Suppl. filesValid Package

Verification

Page 142 of 235 | PART 1

has a unique URI-compliant file name along with a specified content-type expressed in the form of a MIME

media type.

Relationships are defined to connect the package to files, and to connect various files in the package. The

definition of the relationships (along with the files´ names) is the logical model of the package. The resource

that is a source of a relationship must be either the package itself or a data component (file) inside of the

package. The target resource of a relationship can be any URI-addressable resource inside or outside of the

package. It is possible to have more than one relationship that share the same target file (see example 9–6 in

ISO/IEC 29500-2: 2012).

The physical model maps these logical concepts to a physical format. The result of this mapping is a physical

package format (a ZIP archive format) in which files appear in a directory-like hierarchy (adapted from [27] and

[28]).

8.3 Conventions for the Asset Administration Shell Package File Format

(AASX)

The Asset Administration Shell Package (AASX) format derives from the Open Package Conventions

standards, consequently inheriting its characteristics. Nevertheless, some conventions shall be defined for the

AASX:

• Package format and rules according to ISO/IEC 29500-2:2012. Any derivate format from this standard

(such as the AASX format) requires the definition of a logical model, physical model and a security

model. Those specific conventions are described in the next subsections.

• File extension for the AASX format: .aasx

• MIME-type for the AASX format: application/asset-administration-shell-package38

• Icon for the AASX.

• The AASX format can be identified by the file extension and content (MIME) type. Content-wise, it is

possible to identify it when reading the first relationship file /_rels/.rels (as defined in Open Packaging

Conventions) and looking for a relationship type http://admin-shell.io/aasx/relationships/aasx-

origin (which is the entry point for the logical model of the Asset Administration Shell).

• The following paths and filenames in the package are already reserved by the Open Packaging

Conventions specification and therefore shall not be used for any derivative format:

/[Content_Types].xml; /_rels/.rels; /<file_path>/_rels/<filename>.rels (where <filename> is a file in

the package that is source of relationships and <file_path> is the path to that file).

• It is not mandatory to open the AASX format in any existing Office Open XML / Open Packaging

Conventions compatible office-application (e.g. Microsoft Office, LibreOffice), because the required

relationships and files for the different office “models” may not be present (e.g.

http://schemas.openxmlformats.org/officeDocument/2006/relationships/officeDocument for “docx”

document).

8.4 ECMA-376 Relationships

As mentioned before, it is necessary to define a logical model for formats on top of Open Packaging

Conventions. Figure 75 defines a set of relationship types (URIs) and the corresponding source files as a part

of the logical model for the AASX format. In addition (not shown in Figure 75), a specific relationship instance

has also a unique ID and a target resource (URI of a target file inside or outside the package).

38 The currenty MIME-type is provisory and needs to be requested officially.

ECMA-376 RELATIONSHIPS | Page 143 of 235

Figure 75 Relationship Types for AASX Packages

The relationship types for thumbnail, core-properties, digital-signatures (origin, signature and certificate) are

defined by Open Packaging Conventions, so no need to reinvent. The other relationship types were specifically

defined to support the AASX package format. Here a short description on each relationship type39 of Figure

75:

• thumbnail – Optional. Required to define a thumbnail for that package (e.g. picture of the

administrated device). The thumbnail picture can be shown instead of the package’s icon based on

the extension and/or content type.

• core-properties – Optional. There is a schema for describing the package through "core properties,"

which uses selected Dublin Core metadata elements in addition to some Open Packaging

Conventions-specific elements. The core-properties do not describe the Administration Shell, but the

package itself. Some elements of the core-properties may be similar/equal to elements of the

Administration Shell. Some core-properties are: Title, Subject, Creator, Keywords, Description,

LastModifiedBy, Revision, LastPrinted, Created, Modified, Category, Identifier, ContentType,

Language, Version, ContentStatus.

• digital-signature/origin, digital-signature/signature and digital-signature/certificate – Optional.

Required if you need to sign files and relationships inside the package. Their relationships basically

target files that contain the data on signatures (e.g. certificate, digests, …). See the description later

in this document about digital signatures.

• aasx-origin – Mandatory. This relationship targets an aasx-origin file which shall be an empty file or

a plain text file containing the text “Intentionally empty”. It is the entry-point for all aas specific

relationships and files inside the package. The source of the aasx-origin relationship must be the

package root.

• aas-spec – Mandatory: Targets the file (“aasenv”) that contains the structure/specification of one or

more identifiable elements (such as AAS, Submodel or ConceptDescription), according to the XML or

JSON format defined in this document. The source of the aasx-spec relationship must be the aasx-

origin file.

• aas-suppl – Optional. Targets any additional file, which is referenced (not stored as blob) from within

the data of an AAS via File element (see Clause 5.7.7.8). The source of any aasx-suppl relationship

must be the file containing the AAS structure/specification.

39 To avoid the long names of the relationship types, we will use the short name along the text.

Page 144 of 235 | PART 1

Note: Not every File element inside the specification of an Submodel may target a file stored within the same AASX
package. Only a relative URI reference (absolute-path or relative-path reference) shall be interpreted as a
reference to a supplementary file within the AASX package.

8.5 File Name Conventions

Using the ECMA-375 relationships (8.4) allows to locate files within the AASX package independently from the

file name. For example, one package producer might store an aas-spec file in /aasx/device.xml, the other one

in /asset-admin-shell/productX123.xml, but both use the same relationship type to target that file. To have a

more consistent approach, the following conventions are defined for naming files inside the AASX package:

• /aasx/ shall be the common prefix for all files containing AASX package specific information.

• /aasx/aasx-origin shall be the target of the aasx-origin relationship without content (empty file).

• /aasx/data.<extension> shall be the target of the aas-spec relationship, where <extension> is “xml”

or “json”, based on the type of serialization.

• It is also possible to have a serialization of the same data in both serialization formats (xml, json)

stored in the same AASX package. In this case, the different serialization formats can be stored in

parallel using the aforementioned extensions and appropriate ECMA-376 Content Types (MIME type).

In this case, for both of these files the appropriate aas-suppl relationships, targeting the supplementary

files, must be created.

An example of an AASX package is shown in Figure 76. It shows the content of the AASX package listed in a

tree view using the ECMA-376 relationship types defined in Figure 75 and following the file name conventions

as defined above. In this example, it is assumed that the AAS specification files are serialized into XML.

Figure 76 Example of an AASX package content - tree view (left) and ECMA-376 relationship types

(right)

In addition to the AASX specific files, files common to all ECMA-376 packages - such as relationship parts

(*.rels) and the Content Types stream ([Content_Types].xml) - must be contained in an AASX package in its

physical representation as a .zip archive. For more information on these files, please refer to the ECMA-376

specification.

8.6 Digital Signatures

A digital signing feature is already provided by the Open Packaging Conventions specification [27]. Hence,

this signing framework for packages can also be used for AASX packages. To ensure the integrity of the AAS

data, all relevant files within the package (aasx-origin file, AAS structure specification file, supplementary files)

and the associated relationship parts shall be signed.

ENCRYPTION | Page 145 of 235

8.7 Encryption

The Open Packaging Conventions specification (ISO/IEC 29500-2:2012) mentions that “ZIP-based packages

shall not include encryption as described in the ZIP specification. Package implementers shall enforce this

restriction [M3.9]”40. However, an Open Packaging Conventions package may be encrypted with other means

and some applications using this package format as the basis for a more specific format, may use encryption

during interchange or DRM for distribution [24].

An example is the Office Document Cryptography Structure (MS-OFFCRYPTO) used by derivate office

formats. Some used technologies may be covered by Patents from Microsoft and therefore it isn’t

recommended for the AASX format. Digital Rights Management (DRM) can also be used to encrypt content

elements in a package with specific access rights granted to authorize users (see the implementation in the

system.io.packaging namespace [31]).

Regarding encryption and confidentiality, the following rules shall be followed:

1. Decide if there is a need of including confidential content in a package. If there is no reason, then the

confidential content should not be included.

2. If encryption is desired for a temporary communication act (e.g. e-mail exchange, …) or if a AASX

needs to be stored somewhere so that it can be opened later by the same entity, then encryption

methods can be used for that specific mean (e.g. use BitLocker when storing the AASX in Windows-

based systems that support it, use S/MIME for exchanging encrypted e-mails between entities, etc.).

3. For all other use cases41 where encryption is required for some or all of the content of the AASX:

• Encryption methods can be used for individual files in the AASX package, as soon as the

“encrypted” version replaces the original file in the package, the content type of the encryption

format is known, and the content type must be listed in the [Content-Type].xml. The

relationships as defined in this document remain the same, whenever content is encrypted or

not. Note that Open Packaging Conventions related files as well as relationship files shall not

be encrypted, and digital signing must be performed after encryption. One example of an

encryption standard is the Secure MIME (S/MIME), where the encrypted content should be

stored in application/pkcs7-mime format as defined in RFC 5652 and use the file extension

*.p7m.

• Besides encrypting the content of the package (individual files) it is possible to encrypt the full

package (e.g. also using Secure MIME and saving the encrypted package in

application/pkcs7-mime file format). In this case, the signature of the content of the package

must be done before the encryption.

40 The reason for this might be related to the transparency requirement for the package format as well as

license requirements of PKWARE. For the ISO/IEC 21320-1 (Document Container File: Core) there is the

following statement: “Encryption of individual files and of the central directory is prohibited. Hence this profile

of ZIP_PK is more transparent than its parent format.” [30]

41 A use case could be to encrypt a submodel and only provide the access to the unencrypted data after paying

a fee.

Page 146 of 235 | PART 1

9 Mappings to Data Formats to Share I4.0-

Compliant Information

GENERAL | Page 147 of 235

9.1 General

Sharing information between different systems throughout the areas covered by the entire RAMI4.0 model [1]

[2] is crucial for Industrie 4.0 applications. OPC UA has been targeted as a format for information models in

the domain of production operations, but there is a need for other formats for the other areas and the

interrelationships between them.

This document specified the Asset Administration Shell in an technology neutral format, UML. For usage in

the different life cycle phases of a product different data formats are used or recommended to be used42. For

each of these format’s serializations and mappings of the Asset Administration Shell are provided to cover the

complete life cycle. Table 12 explains the main purpose of each of the formats: OPC UA information models,

AutomationML, XML, JSON and RDF. The different purposes are visualized in Figure 77.

Table 12 Distinction of Different Data Formats for the AAS

Data format Purpose / motivation

OPC UA Information

models

Access to all information of the administration data and sharing of live data within

production operations. Access for higher-level factory systems to this information.

AutomationML Sharing of type and instance information about assets, particularly during engineering.

Transfer of this information into the operational phase (cf. OPC UA and the

corresponding mapping)

XML, JSON Serialisation of this information for the purpose of technical communication between

phases.

RDF Mapping of this information to enable full use of the advantages of semantic

technologies.

Figure 77 Graphic View on Exchange Data Formats for the Asset Administration Shell43

The mapping specifications and schemata themselves are not part of the specification any longer but maintained
open source. This eases usage of the specification and the different formats in open source code projects.

42The abbreviated use of the word “data formats” includes the use of conceptual advantages such as

information models, schemes, transmission protocols, etc.

43 Only data formats considered in this document so far are mentioned in the figure.

Page 148 of 235 | PART 1

Projects dedicated to the Asset Administration Shell are planned to be hosted under the new Top Level Project
“Digital Twin” of the Eclipse Foundation [55], driven by the Industrial Digital Twin Association (IDTA).

9.2 General Rules

9.2.1 Introduction

There are some general rules that apply to all serializations or can be used in different serializations.

9.2.2 Encoding

For blobs the following encoding is required: base64 string.

9.2.3 Serialization of Values of Type “Reference”

In some mappings or serializations, the type “Reference” is converted into a single string. In this case we

recommend using the following serialization:

 <Reference> ::= [‘[‘<KeyType>’]’]<Key>{, <Key>}*

 <KeyType> ::= GlobalRef | ModelRef

 <Key> ::= (<KeyType>)<KeyValue>

 <KeyType> ::= value of AAS:Key/type

 <KeyIdType> ::= value of AAS:Key/.idType

 <KeyValue> ::= value of AAS:Key/value

Note: An IRI may contain also special symbols like “(“, “,” and “[“. For being able to distinguish beginning and end of
a new key a blank is added before the new key or value.

Note: KeyType is optional because from the first key in the key chain it is clear whe ther the reference is a global or
a model reference. The examples in this document therefore do not use this prefix.

Examples:

Global References:

 (GlobalReference)0173-1#02-BAA120#008

 [GlobalRef](GlobalReference)0173-1#02-BAA120#008

(Submodel)http://example.com/aas/1/1/1234859590, (SubmodelElementList)Documents,

(SubmodelElementCollection)0, (MultiLanguageProperty)Title

Model References:

(ConceptDescription)0173-1#02-BAA120#008

[ModelRef](ConceptDescription)0173-1#02-BAA120#008

(Submodel)http://example.com/aas/1/1/1234859590, (Property)Temperature

9.2.4 Semantic Identifiers for Metamodel and Data Specifications

To enable the unique identification of concepts as used and defined in the metamodel of the Asset

Administration Shell rules for creating such identifiers are defined.

The following grammar is used to create valid identifiers:

<Namespace> ::= (<AAS Namespace>|<Data Specification Namespace>)

<Namespace Qualifier> ::= <AAS Namespace Qualifier>| <Data Specification Qualifier>

<AAS Namespace> ::= <Shell-Namespace>”/aas/”<Version>

GENERAL RULES | Page 149 of 235

<Data Specification Namespace> ::=

<Shell-Namespace>“/DataSpecifications/“<idShort of Data Specification><Version>

<Shell-Namespace> ::= “https://admin-shell.io/”

<Version> ::= <Digit>+”/”<Digit>+[”/”<Character>+]

<Digit> ::= 0| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<Character> ::= an unreserved character permitted by DIN SPEC 91406

? ::= zero or one

+ ::= one or more

Up to now two data specification templates are defined. For every data specification it needs to be defined

which data specification namespace to use.

<AAS Namespace Qualifier> ::= “AAS:”

<Data Specification Qualifier> ::= defined per Data Specification

A concrete unique identifier is defined as follows:

<AAS Unique Concept Identifier> ::= (<Namespace> | <Namespace Qualifier>)”/”<AAS Concept Identifier>

<AAS Concept Identifier> ::= <AAS Class Name>[(<AAS Attribute>|<AAS Enumeration>)]

<AAS Attribute> ::= “/”<AAS Attribute Name>[{“/”<AAS Attribute Name>}*]

<AAS Enumeration> ::= [{“/”<AAS Attribute Name>}*]”/”<AAS Enumeration Value>

Examples for valid unique AAS concept identifiers:

https://admin-shell.io/aas/2/0/AssetAdministrationShell/administration/version

AAS:AssetAdministrationShell/administration/version

AAS:AssetInformation/assetKind/Instance

The application of the pattern is explained in the following:

The concept identifier of a Class follows the pattern:

<AAS Class name>

This also holds for abstract classes and types including Enumerations.

Examples: AAS:Submodel, AAS:Qualifier, AAS:Reference, AAS:ContentType, AAS:AasSubmodelElements

Attributes of Classes are separated by “/”. Also inherited attributes can be referenced like this if the concrete

referable is important in the context.

Basic Pattern:

<AAS Class name>”/”<AAS Attribute Name>

Page 150 of 235 | PART 1

Examples44: AAS:Referable/idShort or AAS:Property/idShort or AAS:Qualifier/semanticId

This also holds for attributes of attributes if the cardinality of the attributes involved is not greater than 1:

<AAS Class Name>”/”<AAS Attribute Name>[{“/”<AAS Attribute Name>}*]

Examples: AAS:Identifiable/administration/version

This also holds for values of enumerations

<AAS Class Name>[{“/”<AAS Attribute Name>}*][“/”<AAS Enumeration Value>]

Examples: AAS:Key/type/Submodel or AAS:AasSubmodelElements/Submodel

In case of an attribute with cardinality greater than 1 no further attributes or enumeration values can be added.

Note: Although the attribute name in UML is always singular even if the cardinality is > 1 the attribute name is
annotated by the plural “s”.

Examples: AAS:Operation/InputVariables or AAS:AssetAdministrationShell/submodels or

AAS:Submodel/submodelElements

AAS:AssetAdministrationShell/submodels/administration/version or AAS:Submodel/Property/idShort are no

valid concept identifier.

These semantic identifiers are used as values for the RefSemantic attribute in AutomationML Mapping of the

Asset Administration Shell. These identifiers are also used in OPC UA to describe the semantics of the

metamodel via the OPC UA HasDictionaryEntry reference type.

For specific serializations and mappings additional identifiers might be needed. For example for a set of Asset

Administration Shells or a set of available concept descriptions etc. Here, the AAS metamodel and specification

does not give any recommendations.

Data specification handling is special. Data Specification Templates do not belong to the metamodel of the

AAS. However, only the predefined data specification templates as specified in this specification are supported

in the serializations. For these the corresponding name space qualifier are defined individually.

Examples: IEC:DataSpecificationIEC61360/preferredName (see Clause 6.3) or

IEC:DataSpecificationIEC61360/unit (see Clause 6.4).

For the data specification itself the AAS namespace is used: AAS:DataSpecifciationIEC61360

In xml and JSON data specifications are embedded into the schema itself using the attribute

“embeddedDataSpecification”. For these no concept identifier shall be used. I.e.

 AAS:ConceptDescription/embeddedDataSpecification

is not a valid concept identifier. AAS:DataSpecificationContent is a valid concept identifier.

9.2.5 Embedded Data Specifications

This specification predefines data specifications that can be used within an AAS to ensure interoperability.

Thus, some serializations or mapping support exactly these data specifications defined in this specification

and no others although the metamodel as such is more flexible and would also support proprietary data

specifications.

In this case of restricted data specifications to be used the notation is that of “embedded data specifications”.

In Figure 78 the realization is explained: instead of a set of external global references to externally defined

data specifications a set of pairs consisting of an external global reference to a data specification as well as

the data specification content itself is directly “embedded”. In this realization the data specification content

belongs to the schema etc. whereas in the general concept the data specification including its content are not

44 For simplicity most examples use the namespace qualifier and not the full path of the namespace.

GENERAL RULES | Page 151 of 235

part of the schema. This is similar to the concept of semanticIds: either it is an external global reference to an

external concept dictionary or it is a reference to a concept description within the schema. However, for

semanticId we only allow exactly one reference, whereas for data specifications a set of data specifications

references is allowed.

Figure 78 Realization of Embedded Data Specifications

Page 152 of 235 | PART 1

9.3 XML

For import and export scenarios the metamodel of an Asset Administration Shell needs to be serialized. A

serialization format is XML.

eXtensible Markup Language (XML45) is very well suited to deriving information from an IT system, perhaps to

process it manually, and then to feed it into another IT system. It therefore meets the needs of the information

sharing scenario defined in the leading picture in Clause 4. XML provides for the possibilities of scheme

definitions which can be used to syntactically validate the represented information in each step.

The xml schema (.xsd files) is maintained in the repository “aas -spec” of the github project admin-shell-io [41]:
https://github.com/admin-shell-io/aas-specs/tree/master/schemas/xml

The mapping rules how to derive the xml schema from the technology neutral meta model as defined in this
specification can be found here: https://github.com/admin-shell-io/aas-specs/tree/master/schemas/xml#xml-
mappingrules.

Example files can be found here: https://github.com/admin-shell-io/aas-specs/tree/master/schemas/xml/examples.

9.4 JSON

For import and export scenarios the metamodel of an Asset Administration Shell needs to be serialized. A

serialization format is JSON46 (JavaScript Object Notation).

Additionally, JSON format is used for describing the payload in the http/REST API for active Asset

Administration Shells [49].

The JSONschema (.json files) is maintained in the repository “aas-spec” of the github project admin-shell-io [41]:
https://github.com/admin-shell-io/aas-specs/tree/master/schemas/json

The mapping rules how to derive the JSON schema from the technology neutral meta model as defined in this
specification can be found here: https://github.com/admin-shell-io/aas-specs/tree/master/schemas/json#json-
mapping-rules

Example files can be found here: https://github.com/admin-shell-io/aas-specs/tree/master/schemas/json/examples.

9.5 RDF

The Resource Description Framework (RDF) [44] is recommended standard of the W3C to unambiguously

model and present semantic data. RDF documents are structured in the form of triples, consisting of subjects,

relations and objects. The resulting model is often interpreted as a graph, with the subject and object elements

as the nodes and the relations as the graph edges.

RDF is closely related to Web standards, illustrated by the fact that all elements are encoded using (HTTP-

)URIs. As a common practice, the provision of additional information at the referenced location of an RDF

entity directly allows the interlinking of entities47 based on the Web. This process, the following of links in order

to discover related information, is called dereferencing a resource and is supported by any browser or web

client. Connecting distributed data sources through the Web in the described manner is referenced by the term

Linked Data. Connecting the available resources and capabilities of Linked Data with the expressiveness of

the Asset Shell is one motivation for the RDF serialization.

In addition, RDF is the basis of a wide range of logical inference and reasoning techniques. Vocabularies like

RDF Schema (RDFS) and the Web Ontology Language (OWL) combine the graph-based syntax of RDF with

formal definitions and axioms. This allows automated reasoners to understand the relation between entities to

some extent and draw conclusions.

Combining both features, the RDF mapping of the Asset Administration Shell can provide the basis for complex

queries and requests. SPARQL, the standard query language for the Semantic Web, can combine reasoning

45 see: https://www.w3.org/TR/2008/REC-xml-20081126/

46 see: https://tools.ietf.org/html/rfc8259 or https://www.ecma-international.org/publications/standards/Ecma-

404.htm

47 Note: entity as a generic term and entity as a specific submodel element subtype need tobe distinugished.

https://github.com/admin-shell-io/aas-specs/tree/master/schemas/xml
https://github.com/admin-shell-io/aas-specs/tree/master/schemas/xml%23xml-mappingrules
https://github.com/admin-shell-io/aas-specs/tree/master/schemas/xml%23xml-mappingrules
https://github.com/admin-shell-io/aas-specs/tree/master/schemas/xml/examples
https://github.com/admin-shell-io/aas-specs/tree/master/schemas/json
https://github.com/admin-shell-io/aas-specs/tree/master/schemas/json%23json-mapping-rules
https://github.com/admin-shell-io/aas-specs/tree/master/schemas/json%23json-mapping-rules
https://github.com/admin-shell-io/aas-specs/tree/master/schemas/json/examples
https://tools.ietf.org/html/rfc8259
https://www.ecma-international.org/publications/standards/Ecma-404.htm
https://www.ecma-international.org/publications/standards/Ecma-404.htm

OPC UA | Page 153 of 235

features with the integration of external data sources. In order to benefit of these abilities, the AAS requires a

clear scheme of its RDF representation.

The RDF scheme/OWL files (.ttl files) are maintained in the repository “aas-spec” of the github project admin-shell-
io [41]: https://github.com/admin-shell-io/aas-specs/tree/master/schemas/rdf

The mapping rules how to derive the RDF schema from the technology neutral meta model as defined in this
specification can be found here: https://github.com/admin-shell-io/aas-specs/tree/master/schemas/json#json-
mapping-rules.

Example files can be found here: https://github.com/admin-shell-io/aas-specs/tree/master/schemas/rdf/examples.

9.6 AutomationML

For import and export scenarios the metamodel of an Asset Administration Shell needs to be serialized. As a

serialization format, AutomationML (IEC 62714) is especially suitable for the engineering phase.

In general the serialization approach is to map each object of the Asset Administration Shell metamodel to an

AutomationML Role Class or to an AutomationML Role Class accompanied by an AutomationML Interface

Class. This Role Class and (if applied) Interface Class then also define the required attributes in AutomationML.

Asset administration shells itself shall be modelled as AutomationML System Unit Classes or as Internal

Elements within an Instance Hierarchy depending of the kind information of type and instance.

For the Role Classes and Interface Classes that are required for the serialization an AutomationML Role Class

Library resp. an Interface Class Library are defined and provided to the public.

One of the goals is to ensure that the AutomationML model of the Asset Administration Shell can be used as

a standalone AutomationML model as well as in combination with existing AutomationML models such as the

upcoming AutomationML Component Description. Therefore, the definition of the serialization approach

defined in this Clause is interleaved with the AutomationML definitions and applies the AutomationML

technology definitions widely on https://www.automationml.org/o.red.c/dateien.html

[37] is the AutomationML application recommendation for the Asset Administration Shell (AR AAS). This annex

is just for information.

The works of the mapping of the Asset Administration Shell to AutomationML is are carried out in a joint working
group between AutomationML e.V. and Plattform Industrie 4.0.

The resulting application recommendation (AR 004E) “Asset Administration Shell (AAS) Representation” [37] can be
found here: https://www.automationml.org/download-archive/, together with .aml files

9.7 OPC UA

OPC UA is the suitable for the operating phase of Asset Administration Shells and especially applicable in

case of machine to machine communication. The information model [57] is the basis for the definition of so-

called OPC UA Information Models, or OPC UA Companion Specifications [58].

The works of the mapping to the OPC Unified Architecture are carried out in a joint working group 48 “I4AAS” between
OPC Foundation, ZVEI and VDMA (https://opcfoundation.org/markets-collaboration/I4AAS/ [39].

The different versions of the OPC UA Companion Specification for I4 Asset Administration Shell can be found here:
https://reference.opcfoundation.org/<version>/I4AAS/<version>/docs/ , e.g.
https://reference.opcfoundation.org/v104/I4AAS/v100/docs/ for release 1.00 [56].

48 see: https://opcfoundation.org/collaboration/i4aas/

https://github.com/admin-shell-io/aas-specs/tree/master/schemas/
https://github.com/admin-shell-io/aas-specs/tree/master/schemas/json%23json-mapping-rules
https://github.com/admin-shell-io/aas-specs/tree/master/schemas/json%23json-mapping-rules
https://github.com/admin-shell-io/aas-specs/tree/master/schemas/rdf/examples
https://www.automationml.org/download-archive/
https://opcfoundation.org/markets-collaboration/I4AAS/
https://reference.opcfoundation.org/%3cversion%3e/I4AAS/%3cversion%3e/docs/
https://reference.opcfoundation.org/v104/I4AAS/v100/docs/
https://opcfoundation.org/collaboration/i4aas/

Page 154 of 235 | PART 1

10 Filtering of Information in Export and Import
When exchanging information from partner A to partner B there are two use cases:

• The producer of information does not want to submit the complete information but only parts of it. The

information submitted might vary depending on the specific consumer the information is submitted to.

I.e. a filtering mechanism is needed that allows to individually shape the information for the specific

consumer.

• The consumer of information does not want to include all information provided by the producer of

information in his own process, i.e. he wants to filter only the relevant information.

Figure 79 Example Filtering for Export and Import

As an example, assume that the producer is submitting the complete order data. However, the consumer (in

this case the machine builders) is filtering the information (1) and is only importing the information relevant to

him. For the functionality both are filtering: the producer is filtering what he submits to the consumer (2) and

the consumer again is not using all functionality but is filtering again which functionality shall be used in his

environment. The same is possible between machine builders and operator.

Note: In the use case considered in this document, the exchange of information via sharing of xml files etc. the
information that is not intended to be submitted needs to be extracted from the corresponding xml files before
delivery or before import, respectively. Role or attributes access control do not fit here. The corresponding
access policies might help filtering the corresponding information, but they cannot be submitted as part of the
corresponding file exchanged.

Table 13 shows an example when using the defined xml format as defined in this document. In the example

the German translation shall not be submitted, only English language is provided for partner B.

OPC UA | Page 155 of 235

Table 13 Example Filtering of Information in XML49

49 Note: xml serialization may be simplified and not conformant to standardized xml serialization.

Page 156 of 235 | PART 1

11 Tools for the Asset Administration Shell

OPEN SOURCE TOOLS | Page 157 of 235

11.1 Open Source Tools

This clause gives some hints with respect to available open source tools supporting the creation and operating

of an Asset Administration Shell.

The top level project “Digital Twin” of the Eclipse Foundation is the home for many projects featuring the Asset

Administration Shell. In the following we just mention a few. Besides, there are also other open source projects

hosted in other domains. So it is not possible to give a complete overview.

The AASX Package Explorer is an open source browser and editor for creating Asset Administration Shells as

.aasx packages [40]. The AASX Package Explorer supports the xml and JSON serialization of the Asset

Administration Shell. Additionally, export formats for AutomationML or server generation for OPC UA are

provided. But also, additional export formats like BMEcat etc. are supported. Since it is an open source

implementation new features are added continuously. On [41] the specifications are hosted and some other

open source code projects not yet transferred to Eclipse Foundation.

BaSyx, a software platform, is another open source implementation for the Asset Administration Shell and

provides software development kits for C++, C# and Java [42].

Page 158 of 235 | PART 1

12 Summary and Outlook

OPEN SOURCE TOOLS | Page 159 of 235

In this document a metamodel for the structural viewpoint of the Asset Administration Shell is defined using

UML. It covers security aspects as well as features for handling composite I4.0 Components. Data specification

templates for defining concept descriptions for properties and physical units are provided.

Additionally, an exchange format is specified, the AASX package file format.

Several serializations and mappings are offered:

• XML and JSON for Exchange between partners via exchange format .aasx

• RDF for reasoning

• AutomationML for the engineering phase

• OPC UA for the operation phase

Additional parts of the document series cover (see [49]):

• Interfaces and APIs for accessing the information of Asset Administration Shells (access, modify,

query and execute information and active functionality). The payload of these APIs is based on the

definitions of the information model in this document, part 1.

• The infrastructure, which hosts and interconnects multiple Asset Administration Shells together. It

implements registry, discovery services, endpoint handling and more.

Annex

ANNEX | 161

ANNEX A. CONCEPTS OF THE ADMINISTRATION

SHELL

i. GENERAL

In this clause, a general information is given about sources of information and relevant concepts for the Asset

Administration Shell. Some of these concepts are explained in a general manner. Some concepts are update

in order to reflect actual design decisions. No new concepts are introduced. Thus, the clause can be taken as

a fully informative (annex) to the specification of the Administration Shell.

ii. RELEVANT SOURCES AND DOCUMENTS

The following documents were used to identify requirements and concepts for the Administration Shell:

• Implementation strategy of Plattform Industrie 4.0 [1][2]

• Aspects of the research roadmap in application scenarios [7]

• Continuation of the application scenarios [8]

• Structure of the Administration Shell [4] [18]

• Examples for the Administration Shell of the Industrie 4.0 Components [6]

• Technical Overview “Secure identities” [9]

• Security of the Administration Shell [14]

• Relationships between I4.0 components – Composite components and smart production [12]

Note 1: The global Plattform Industrie 4.0 glossary can be found at: https://www.plattform-
i40.de/PI40/Navigation/EN/Industrie40/Glossary/glossary.html

Note 2: The online library of the Plattform Industrie 4.0 can be found at: https://www.plattform-
i40.de/PI40/Navigation/EN/Downloads-News/downloads-news.html

Note 3: The online library of the Industrial Digital Twin Association can be found at:
https://industrialdigitaltwin.org/en/content-hub/downloads

iii. BASIC CONCEPTS FOR INDUSTRIE 4.0

Industrie 4.0 describes concepts and definitions for the domain of smart manufacturing. For Industrie 4.0, the

term asset, being any "object which has a value for an organization", is of central importance [2] [23]. Thus,

assets in Industrie 4.0 can take almost any form, for example be a production system, a product, a software

installation, intellectual properties or even human resources.

According [23], the "reference architecture model Industry 4.0 (RAMI4.0) provides a structured view of the

main elements of an asset using a level model consisting of three axes [...]. Complex interrelationships can

thus be broken down into smaller, more manageable sections by combining all three axes at each point in the

asset’s life to represent each relevant aspect."

Assets shall have a logical representation in the "information world", for example shall be managed by IT-

systems. Thus, an asset has to be precisely identified as an entity, shall have a "specific state within its life (at

least a type or instance)", shall have communication capabilities, shall be represented by means of information

and shall be able to provide technical functionality [23]. This logical representation of an asset is called

Administration Shell [4]. The combination of asset and Administration Shell forms the so-called I4.0

Component. In international papers [18], the term smart manufacturing replaces the term Industrie 4.0.

For the large variety of assets in Industrie 4.0, the Administration Shell allows handling of these assets in the

information world in always the same manner. This reduces complexity and allows for scalability. Additional

motivation can be found in [2] [4] [7] [8].

https://www.plattform-i40.de/PI40/Navigation/EN/Industrie40/Glossary/glossary.html
https://www.plattform-i40.de/PI40/Navigation/EN/Industrie40/Glossary/glossary.html
https://www.plattform-i40.de/PI40/Navigation/EN/Downloads-News/downloads-news.html
https://www.plattform-i40.de/PI40/Navigation/EN/Downloads-News/downloads-news.html
https://industrialdigitaltwin.org/en/content-hub/downloads

162 | PART 1

Figure 80 Important concepts of Industrie 4.0 attached to the asset [2] [23]. I4.0 Component to be

formed by Administration Shell and Asset.

iv. THE CONCEPT OF PROPERTIES

According [20], the "IEC 61360 series provides a framework and an information model for product dictionaries.

The concept of product type is represented by 'classes' and the product characteristics are represented by

'properties'".

Such properties are standardized data elements. The definitions of such properties can be found in a range of

repositories, such as IEC CDD (common data dictionary) or ECLASS. The definition of a property (aka

standardized data element type, property type) associates a worldwide unique identifier with a definition, which

is a set of well-defined attributes. Relevant attributes for the Administration Shell are, amongst other, the

preferred name, the symbol, the unit of measure and a human-readable textual definition of the property.

ANNEX | 163

Figure 81 Exemplary definition of a property in the IEC CDD

The instantiation of such definition (just 'property', property instance) typically associates a value to the

property. By this mechanism, semantically well-defined information can be conveyed by the Administration

Shell.

Note: Industrie 4.0 and smart manufacturing in general will require many properties which are beyond the current
scope of IEC CDD, ECLASS or other repositories. It is expected that these sets of properties will be
introduced, as more and more domains are modelled and standardized (next clause).

v. THE CONCEPT OF SUBMODELS

"The Administration Shell is the standardized digital representation of the asset, corner stone of the

interoperability between the applications managing the manufacturing systems" [18]. Thus, it needs to provide

a minimal but sufficient description according to the different application scenarios in Industrie 4.0 [7] [8]. Many

different (international) standards, consortium specifications and manufacturer specifications can already

contribute to this description [18].

As the figure shows, information from different many different technical domains could be associated with a

respective asset and thus, many different properties are required to be represented in Administration Shells of

future I4.0 Components. In order to manage these complex set of information, submodels provide a separation

of concern.

164 | PART 1

Figure 82 Examples of different domains providing properties for submodels of the Administration

Shell

The Administration Shell is thus made up of a series of submodels [4]. These represent different aspects of

the asset concerned; for example, they may contain a description relating to safety or security [14] but could

also outline various process capabilities such as drilling or installation [6].

From the perspective of interoperability, the aim is to standardise only a single submodel for each aspect /

technical domain. For example, it will thus be possible to find a drilling machine by searching for an

Administration Shell containing a submodel “Drilling” with appropriate properties. For communication between

different I4.0 components, certain properties can then be assumed to exist. In an example like this, a second

submodel, “energy efficiency”, could then ensure that the drilling machine is able to cut its electricity

consumption when it is not in operation.

Note: side benefit of the Administration Shell will be to simplify the update of properties from product design (and
in particular system design) tools, update of properties from real data collected in the instances of assets,
improve traceability of assets along life cycle and help certify assets from data.

vi. BASIC STRUCTURE OF THE ASSET ADMINISTRATION SHELL

The document on the Structure of the Asset Administration Shell [4] [18] presented a rough, logical view of the

Asset Administration Shell’s structure. The Asset Administration Shell – shown in blue in the following

figure – comprises different sets of information. Both, the asset and the Administration Shell are identified by

a globally unique identifier. It comprises a number of submodels for a characterisation of the Asset

Administration Shell.

Source: ZVEI SG Modelle & Standards

Administration shell, exemplary

Identification

Communication

Engineering

Configuration

Safety (SIL)

Security (SL)

Lifecycle status

Energy efficiency

Condition monitoring

Further ….

Drilling

Milling

Deep drawing

Clamping

Welding

Wet painting

Assembling

Inspecting

Process control

Further ….

A
rc

h
it

ec
tu

re
 g

o
al

:

S
ep

ar
at

io
n

 o
f

co
n

ce
rn

ANNEX | 165

Figure 83 Basic structure of the Asset Administration Shell

Properties, data and functions will also contain information which not every partner within a value-added

network or even within an organisational unit should be able to access or whose integrity and availability should

be guaranteed. Therefore, the structure of the Administration Shell shall be able to handle aspects such as

access protection, visibility, identity and rights management, confidentiality and integrity. Information security

needs to be respected and has to be aligned with an overall security concept. Implementation of security must

go together with the implementation of other components of an overall system.

Each submodel contains a structured quantity of properties that can refer to data and functions. A standardized

format based on IEC 61360-1/ ISO 13584-42 is envisaged for the properties. Thus, property value definition

shall follow the same principles as also ISO 29002-10 and IEC 62832-2. Data and functions may be available

in various, complementary formats.

The properties of all the submodels therefore result in a constantly readable directory of the key information

of the Administration Shell and thus of the I4.0 component. To enable binding semantics, Administration Shells,

assets, submodels and properties must all be clearly identified. Permitted global identifiers are IRDI (e.g. in

ISO TS 29002-5, ECLASS and IEC Common Data Dictionaries) and URIs (Unique Resource Identifiers, e.g.

for ontologies).

It should be possible to filter elements of the Administration Shell or submodels according to different given

views (→ Example C.4 in [18]). This facilitates different perspectives or use-cases for the application of

Administration Shell's information.

Source: ZVEI SG Modelle & Standards

Administration shell

Access on information and functionalities

Runtime data

(from the Asset)

Identification Asset

Identification Administration shell

Strict, coherent format
Different, complementary data

formats

=

Submodel 1 e.g. energy efficiency

Submodel 2 e.g. positioning mode

Submodel 3 e.g. CAD model

Property 1.1.1.1

Property 1.1.1.2

Property 1.1.1.3

Property 2.1.1

Property 1.1

Property 1.1.1

Property 2.1.1.1

Property 2.1.1.2

Property 2.1.2

Property 3.1

Property 3.1.1

Property 3.1.2

Property 2.1

Asset, e.g.

Electrical axis

Administration
shell

Complex data Complex data

Function Function

Function Complex data

Data (CAD) Data (CAD)

Function Function

166 | PART 1

vii. REQUIREMENTS

This section collects the requirements from various documents that have impact on the specific structure of

the Administration Shell. These requirements serve as input for the specific description of the structures of the

Administration Shell.

The following requirements are taken from the document “Implementation strategy of Plattform Industrie 4.0”

[2]. They are marked “STRAT”. The "Tracking" column validates the requirements by linking to features of the

UML metamodel or this document in general.

ID Requirement Tracking

STRAT#1 A network of Industrie 4.0 components must be structured in

such a way that connections between any end point (Industrie

4.0 components) are possible. The Industrie 4.0 components

and their contents are to follow a common semantic model.

Network possible but not scope of

this part of the document series.

Common semantic model realized

by domain specific submodels

(HasSemantics/

ConceptDescription and by

Relations)

STRAT#2 It must be possible to define the concept of an Industrie 4.0

component in such a way that it can meet requirements with

different focal areas, i.e. “office floor” or “shop floor”.

Content-wise, many different

submodels possible.

STRAT#3 Industrie 4.0 compliant communication must be performed in

such a way that the data of a virtual representation of an

Industrie 4.0 component can be kept either in the object itself

or in a (higher level) IT system.

Metamodel and information

representation independent of any

deployment scenario.

STRAT#4 In the case of a virtual representation of an I4.0 component in

a higher-level system, an integrity association must be

ensured between the asset and its representation.

Integrity part of security approach.

STRAT#5 A suitable reference model must be established to describe

how a higher-level IT system can make the Administration

Shell available in an Industrie 4.0 compliant manner (SOA

approach, delegation principle).

Scope of upcoming part of the

document series; not scope of this

part.

STRAT#6 A description is required of how the Administration Shell can

be “transported” from the originator (e.g. component

manufacturer or electrical designer) to the higher-level IT

system (e.g. as an attachment to an email).

Hierarchical representation by

XML/ JSON and package file

format allow for different transport

scenarios.

STRAT#7 Depending on the nature of the higher-level systems, it may be

necessary for the administration objects to allow for

deployment in more than one higher level IT system.

Metamodel and information

representation independent of any

deployment scenario.

STRAT#8 The Industrie 4.0 component, and in particular the

Administration Shell, its inherent functionality and the protocols

concerned are to be “encapsulation-capable” or "separable"

from any field busses in use.

Metamodel and information

representation independent of any

communication scenario.

STRAT#9 The aim of the Industrie 4.0 component is to detect non-

Industrie 4.0 compliant communication relationships leading to

or from the object’s Administration Shell and to make them

accessible to end-to-end engineering.

Non-Industrie 4.0 compliant

communication relationships could

be modelled by submodels and

therefore made available.

STRAT#10 It should be possible to logically assign other Industrie 4.0

components to one Industrie 4.0 component (e.g. an entire

machine) in such a way that there is (temporary) nesting.

References and preparations for

Composite components [12]

ANNEX | 167

STRAT#11 Higher level systems should be able to access all Industrie 4.0

components in a purpose-driven and restrictable manner, even

when these are (temporarily) logically assigned.

Scope of upcoming part of the

document series; not scope of this

part.

STRAT#12 Characteristics (1) Identifiability Given by Identifiable

STRAT#13 Characteristics (2) I4.0-compliant communication Not scope of part 1

STRAT#14 Characteristics (3) I4.0-compliant services and multiple status Standardisation of submodels

STRAT#15 Characteristics (4) Virtual description Available by digital representation

(Submodel and

SubmodelElement)

STRAT#16 Characteristics (5) I4.0-compliant semantics HasSemantics

STRAT#17 Characteristics (6) Security and safety Security by Attribute Based & Role

Based Access.

Safety not scope of part 1

STRAT#18 Characteristics (7) Quality of services Metamodel and information

representation independent of any

communication scenario.

STRAT#19 Characteristics (8) Status Standardisation of submodels

STRAT#20 Characteristics (9) Nestability Supported by Submodels

representing a Bill of Material of an

Asset, Entities and

RelationshipElements

STRAT#21 The minimum infrastructure must satisfy the principles of

Security by Design (SbD).

Security by Attribute Based & Role

Based Access.

The following requirements are taken from the document “The Structure of the Administration Shell:

Trilateral perspectives from France, Italy and Germany” [18]. They are marked “tAAS”.

Note: The term “property” was used in a very broad sense in previous publications of the Plattform Industrie 4.0.
The metamodel in this document distinguishes between properties in a more classical sense as data element
like “maximum temperature” and other submodel elements like operations, events etc.

Source Requirement Tracking

tAAS-#1 The Administration Shell shall

accept properties from different

technical domains in mutually

distinct submodels that can be

version-controlled and

maintained independently of

each other.

Identifiable

AdministrativeInformation

Submodel

Requirements tAAS-#1 implicitly contains the requirements

of versioning. Versioning is supported for all elements

inheriting from Identifiable.

Requirement tAAS-#1 is fulfilled because several submodels

per AAS are possible. Every submodel is identifiable and an

Identifiable may contain administrative information

(AdministrativeInformation) for versioning.

The reason for submodels to be identifiable is that they may

be maintained independently of other submodels

(Requirement tAAS-#1) and that they can be reused within

different AAS. However, since submodel elements may refer

to elements from other AAS dependencies have to be

considered in parallel development and before reuse.

168 | PART 1

tAAS-#2 The Administration Shell should

be capable of including

properties from a wide range of

technical domains and of [sic!]

identify which domain they derive

from.

HasSemantics

Via semantic references property definitions from different

dictionaries and thus different domains can be used within

submodels.

The only thing required is that the domain a property is

derived from has a unique ID (semanticId).

tAAS-#3 For finding definitions within

each relevant technical domain,

different procedural models

should be allowed that

respectively meet the

requirements of standards,

consortium specifications and

manufacturer specifications sets.

HasSemantics/semanticId (see tAAS-#2)

ConceptDescription

Proprietary manufacturer specific property – or more general

– concept descriptions or copies from external dictionaries

are supported by defining ConceptDescriptions. They are

referenced in semanticId via their global ID.

Up to now there is only a predefined data specification

template for Property elements

(DataSpecificationIEC61360).

Usage of proprietary concept descriptions is not

recommended because then interoperability cannot be

ensured.

tAAS-#4 Different Administration Shells in

respect of an asset must be

capable of referencing each

other.

In particular, elements of an

Administration Shell should be

able to play the role of a “copy” of

the corresponding components

from another Administration

Shell.

AssetAdministrationShell/derivedFrom

The derivedFrom relationship is especially designed for

supporting the relationship between an Asset Administration

Shell representing an asset type and the Asset

Administration Shells representing the asset instances of

this asset type.

See also tAAS-#16

tAAS-#5 Individual Administration Shells

should, while retaining their

structure, be combined into an

overall Administration Shell.

AssetAdministrationShell/assetInformation

RelationshipElement

Via the submodel element “RelationshipElement” relations

between entities can be defined.

tAAS-#6 Identification of assets,

Administration Shells, properties

and relationships shall be

achieved using a limited set of

identifiers (IRDI, URI and GUID),

providing as far as possible offer

global uniqueness.

Identifiable

Requirement tAAS-#6 is fulfilled for all elements inheriting

from Identifiable. For example, this is the case for Asset,

AssetAdministrationShell and for concept descriptions.

However, properties (like any other submodel element) are

only referable. However, unique referencing is possible via

the unique submodel ID and the Reference via Keys

concept.

The supported ID types include IRDI, URI (since URI are a

subset of IRI), IRI and GUID (via Custom) as requested.

tAAS-#7 The Administration Shell should

allow retrieval of alternative

identifiers such as a GS1 and

AssetInformation/specificAssetIds

AssetInformation/globalAssetId

ANNEX | 169

GTIN identifier in return to asset

ID (deferencing).

Every asset has a globally unique identifier (globalAssetId).

Besides this global identifier additional external identifiers

can be specified (specificAssetIds).

tAAS-#8 The Administration Shell

consists of header and body.

AssetAdministrationShell

AssetAdministrationShell/id

AssetAdministrationShell/administration

AssetAdministrationShell/assetInformation

The Asset Administration Shell does not explicitly distinguish

between Header and Body. However, the Asset

Administration Shell has attributes defined that belong to

itself like the global unique ID (identification), version

information (administration), a mandatory reference to the

asset identifier information (assetInformation) it represents

etc.

tAAS-#9 The header contains information

about the identification.

AssetAdministrationShell/assetInformation

The Asset Administrative Shell is representing an asset with

a unique ID.

See also tAAS-#7

See also tAAS-#13

tAAS-#10 The body contains information

about the respective asset(s).

AssetAdministrationShell/submodels

All submodels give information with respect to or related to

the asset presented by the AAS.

Note: An Asset Administration Shell is representing
exactly one asset. In case of a composite
Asset Administration Shell it is implicitly
representing several assets (see also tAAS-
#5).

tAAS-#11 The information and functionality

in the Administration Shell is

accessible by means of a

standardized application

programming interface (API).

is covered in part 2 of this document series [49].

tAAS-#12 The Administration Shell has a

unique ID.

AssetAdministrationShell/id

Since AssetAdministrationShell inherits from Identifiable

Requirement tAAS-#12 is fulfilled.

tAAS-#13 The asset has a unique ID. AssetInformation/globalAssetId

The unique ID of the asset is the value of the globalAssetId.

See also Requirement tAAS-#7.

tAAS-#14 An industrial facility is also an

asset, it has an Administration

Shell and is accessible by means

of ID.

AssetInformation/globalAssetId

The only assumption is that the industrial facility also has a

globally unique ID that can be used as value of the

globalAssetId.

170 | PART 1

Note: See also composite Asset Administration Shell
(see tAAS-#5) that allows the modelling of
complex assets consisting of other assets that
are represented by an AAS each by
themselves.

tAAS-#15 Types and instances must be

identified as such.

AssetInformation/assetKind (values: Type or Instance)

AssetAdministrationShell/derivedFrom

With attribute kind of Asset Requirement tAAS-#15 is

fulfilled and asset types can be distinguished from asset

instances.

Additionally, a derivedFrom relationship can be established

between the AAS for an asset instance and the AAS for the

asset type.

tAAS-#16 The Administration Shell can

include references to other

Administration Shells or Smart

Manufacturing information.

ReferenceElement

File

Blob

AssetAdministrationShell/derivedFrom

The derivedFrom relationship between two AAS is special

and is for example used to establish a relationship between

asset instances and the asset type.

For composite AAS (see tAAS-#5) there also is the

relationship to AAS the composite AAS is composed of.

The ReferenceElement is very generic and can reference

another AAS as well as information within another AAS or

even some information that is completely outside any AAS

(as long as it has a global unique ID).

Files and BLOB can be used as submodel elements to

include very generic manufacturing information that is not or

cannot be modelled via properties or the other submodel

elements defined for the Asset Administration Shell.

tAAS-#17 Additional properties, e. g.

manufacturer specific, must be

possible.

HasDataSpecification

ConceptDescription

HasExtensions

Via data specification templates additional attributes for

assets, properties and other submodel elements,

submodels, views and even the Asset Administration Shell

itself can be defined and checked by tools.

New proprietary concept descriptions (ConceptDescription)

can be added and used for semantic definition of properties

or other submodel elements.

Via extensions proprietary information can be added to any

referable. Extensions are not subject to standardization and

thus can be ignored for interoperability use cases.

ANNEX | 171

Via API (see tAAS-#11) new properties, other submodel

elements and submodels can be added – assumed the

corresponding access permissions are given.

tAAS-#18 A reliable minimum number of

properties must be defined for

each Administration Shell.

HasKind for Submodel and SubmodelElements

A reliable minimum number of properties is defined by the

metamodel itself. They are called (class) attributes.

HasKind (with kind=Template) for Submodel and submodel

elements enables the definition of submodel (element)

templates. These templates are referenced via semanticId.

Note: the term property within the metamodel has a
special semantics and shall not be mixed with
the implicitly available attributes of the
different classes. Although these attributes as
well might be based on existing standards they
are no properties in the sense that a semantic
reference can be added that defines the
semantics externally: The semantics is defined
for the metamodel itself in the class tables
within this document.

tAAS-#19 The properties and other

elements of information in the

Administration Shell must be

suitable for types and instances.

HasKind (with kind=Template or kind=Instance) for

Submodel and SubmodelElement

All elements inheriting from HasKind can distinguish

between types and instances. This is especially true for

SubmodelElement and Submodel.

Note: Submodels or properties of kind=Template do
not describe an asset of kind=Type. This is
done via properties of kind=Instance.

tAAS-#20 There must be a capability of

hierarchical and countable

structuring of the properties.

SubmodelElementList

SubmodelElementCollection

Requirement tAAS-#20 is fulfilled by lists and structs of data

elements. Lists and structs are built recursively and thus

contain other submodel elements of the same AAS. For

referencing properties or other submodel elements of other

AAS a reference (ReferenceElement) or relationship

element (RelationshipElement) needs to be included in the

list or as element of the collection.

tAAS-#21 Properties shall be able to

reference other properties, even

in other Administration Shells.

SubmodelElementList

SubmodelElementCollection

ReferenceElement

RelationshipElement

OperationVariable in Operation

A reference element can either reference any other element

that is referable (i.e. inheriting from Referable) within the

172 | PART 1

same or another AAS. Or it can reference entities completely

outside any AAS via its global ID.

Note: For referencing elements within the same AAS
it is not always necessary to use a reference
property. Depending on the context also
submodel element collections, relations etc.
might be more suitable.

Within operations also other elements are referenced or

used as input or output argument via OperationVariable

tAAS-#22 Properties must be able to

reference information and

functions of the Administration

Shell.

Operation

See also tAAS-#21

Functions in the sense of executable entities are

represented as operations.

The following requirements have been derived from the document "Security of the Administrative Shell" [14].

They are marked as "SecAAS"

ID Requirement Tracking

SecAAS-#1 Identification and authentication: It must

be ensured that the correct entities

(Administration Shell and users) interact

with each other. This applies both in a

local communication context (within a

machine or plant) and in a global context

(across companies). The clear

identification (by authentication) of the

communication partners is a basic

requirement for the interaction with a

management shell. Without them, further

security features (confidentiality,

integrity, etc.) cannot be guaranteed.

Certificates are considered to be part of the

infrastructure.

SecAAS-#2 User and rights management: An Asset

Administration Shell can have different

interaction partners. To control the

possibilities of interaction with the

Administration Shell, a user and rights

management is necessary.

Security/accessControlPolicyPoints

AccessControlPolicyPoints/policyAdministrationPoints

AccessControl

AccessControl/accessPermissionRules

There is no explicit subject management in the AAS: It

is assumed that the identity of the subject requesting

access with a given role (via the API - see tAAS-#11)

is authenticated outside the AAS. The AAS can check

the authorization via the endpoint to the subject

attributes’ provider.

For every object in the Asset Administration Shell

access permission rules can be defined.

ANNEX | 173

SecAAS-#3 Secure Communication: Communication

with the Administrative Shell may include

sensitive information. Likewise, a

change in the communication between

the Administration Shell and its

communication partners can cause

serious and dangerous disruptions in a

machine or plant. It is therefore

mandatory that adequate measures be

taken to ensure communication security.

This must be done by using appropriate

security protocols.

Not applicable

SecAAS-#4 Event logging: The traceability of

interaction with the Administration Shell

plays a crucial role in the detection of

security incidents. This traceability is

achieved through logging / event logging

and auditing. The management shell

must therefore provide methods that log

accesses and changes in state of the

management shell without modification.

It is also important to be able to centrally

collect and evaluate this event

information.

History handling will be detailed in future parts or

versions of the document (series).

174 | PART 1

ANNEX B. AASX PACKAGE FILE FORMAT –

BACKGROUND INFORMATION

i. SELECTION OF THE REFERENCE FORMAT FOR THE ASSET
ADMINISTRATION SHELL PACKAGE FORMAT

The Führungskreis Industrie 4.0 – UAG Verwaltungsschale has decided to use the Open Packaging

Conventions (OPC)50 format as the reference for the Asset Administration Shell package format definition, due

to the following reasons:

• Open Packaging Conventions is an international standard specified in ISO/IEC 29500-2:2012 and

ECMA-376.

• Open Packaging Conventions is based on ZIP (as a package container) and XML (for the description

of some internal files and definitions). Those two technologies are the most widely used in their

respective domains and are also addressed for long-term archiving.

• Open Packaging Conventions can be used as package for non-office applications too (there are many

examples available, such as NuGet, FDI packages, etc.). It provides a logical model that is

independent from how the files are stored in the package. This logical model can be expanded to any

sort of application.

• Open Packaging Conventions is also used in the scope of Industry (e.g. FDI packages) and currently

in discussion as possible container format for some FDT® and ODVA Project xDS™ use cases.

• Open Packaging Conventions (and Open Document Format packages too) supports digital signing. It

can be done for individual files inside the package. Encryption isn’t specified in Open Packaging

Conventions (it only mentions what shall not be done). Anyway, encryption is still possible (see later)

• There are some APIs to handle Open Packaging Conventions packages (Windows API, .NET, Java,

…) without the need of much knowledge on the technical specification

• Chunking in Open Packaging Conventions is encouraged, i.e. split files into small chunks. This is better

for reducing the effect of file corruption and better for data access.

• There are some international organizations that recommend using Open Document Format (ISO/IEC

26300-3) instead (e.g. EU, NATO, …), but this recommendation is related to the formats used

specifically in office applications.

• The Office Open XML and Open Packaging Conventions specifications originated from Microsoft

Corporation and later standardized as ISO/IEC 29500 and ECMA-376. Current and future versions of

ISO/IEC 29500 and ECMA-376 are covered by Microsoft's Open Specification Promise, whereby

Microsoft "irrevocably promises" not to assert any claims against those making, using, and selling

conforming implementations of any specification covered by the promise (so long as those accepting

the promise refrain from suing Microsoft for patent infringement in relation to Microsoft's

implementation of the covered specification). [24]

• Office Open XML (including the Open Packaging Conventions format) and Open Document Format

are politically conflicting formats (see details in [25]and [26]). Choosing Open Packaging Conventions

as the option for storing the Asset Administration Shell information was solely a technical decision

based on the arguments mentioned here.

• Open Packaging Conventions was chosen in favour of iiRDS (v1.0). The scope of iiRDS might not be

aligned with the requirements of the Asset Administration Shell, i.e. iiRDS is mostly a format for storing

technical documentation of industry devices based on concepts of ontology.

50 Not to be confused with OPC (Open Platform Communication) of the OPC Foundation. Therefore, we will

use the full term of “Open Packaging Conventions” instead of the abbreviation “OPC”.

ANNEX | 175

ANNEX C. TEMPLATES FOR UML TABLES

i. GENERAL

In this annex, the templates used for element specification are explained. For details for the semantics see

Annex Legend for UML Modelling.

ii. TEMPLATE FOR CLASSES

Template for Classes:

Class:

Explanation:

Inherits from: --

Attribute Explanation Type Card.

The following kinds of Types are distinguished:

• Primitive: Type is no object type (class) but a data type, it is just a value

• Class: Type is an object type (class), it realized as composite aggregation (composition) (does not

exist independent of its parent)

• ModelReference<{Referable}> is a Reference with Reference/type=ModelReference. Such a

reference is called model reference. The {Referable} is to be substituted by any referable element

(including Referable itself for the most generic case): The element that is referred to is denoted in the

Key/type=<{Referable}> for the last Key in the model reference. For the graphical representation see

Annex Legend for UML Modelling, Figure 103. For more information on referencing see Clause 5.7.9.

Card. is the cardinality (or multiplicity) defining the lower and upper bound of the number of instances of the

member element. “*” denotes an arbitrary infinite number of elements of the corresponding Type. “0..1” means

optional. “0..*” or “0..3” etc. means that the list may be either not available (null object) or empty.

Note: Attributes having a default value are always considered to be optional. The reason is that there always is a
value for the attribute because the default value is used for initialization in this cas e.

Examples for valid model references

If Class type equal to “ModelReference<Submodel>” then the following reference would be a valid reference

(using the text serialization as defined in Clause 9.2.3):

(Submodel)http://example.com/aas/1/1/1234859590

If Class type equal to “ModelReference<Referable>” then the following references would be a valid references

(using the text serialization as defined in Clause 9.2.3):

(Submodel)http://example.com/aas/1/1/1234859590

(Submodel)http://example.com/aas/1/1/1234859590, (Property)temperature

(Submodel)http://example.com/aas/1/1/1234859590, (File)myDocument

This would be an invalid reference for “ModelReference<Referable>”:

(Submodel)http://example.com/aas/1/1/1234859590, (File)myDocument (FragmentReference)Hints

This would be an invalid reference for “ModelReference<Submodel>”

176 | PART 1

(Submodel)http://example.com/aas/1/1/1234859590, (Property)temperature

iii. TEMPLATE FOR ENUMERATIONS

Template for Enumerations:

Enumeration:

Explanation:

Set of: --

Literal Explanation

enumValue1 Value of enumeration

enumValue2 Value of enumeration, also included in one of the enumerations listed

in “Set of:”

“Set Of” lists enumerations that are contained in the enumeration. This is just for validation that all elements

are considered that are relevant for the enumeration. The elements “inherited” are greyed.

Enumeration values use Camel Case notation.

iv. TEMPLATE FOR PRIMITIVES

Template for Primitive:

Primitive Explanation Value Examples

v. HANDLING OF CONSTRAINTS

Constraints are prefixed with AASd- followed by a three-digit number. The “d” in AAS was motivated by “in

Detail”. The numbering of constraints is unique within namespace AASd, a number of a constraint that was

removed will not be used again.

Security constraints are prefixed with AASs- followed by a three-digit number. The “s” in AAS was motivated

by “Security”. The numbering of constraints is unique within namespace AASs, a number of a constraint that

was removed will not be used again.

Constraints specific for data specifications IEC61360 are prefixed with AASc- followed by a three-digit number.

The “c” in AAS was motivated by “Concept Description”. The numbering of constraints is unique within

namespace AASc, a number of a constraint that was removed will not be used again.

ANNEX | 177

ANNEX D. LEGEND FOR UML MODELLING

i. OMG UML GENERAL

In the following the used UML elements used in this specification are explained. For more information please

refer to the comprehensive literature available for UML. The formal specification can be found in [47].

Figure 84 shows a class with name “Class1” and an attribute with name “attr” of type Class2. Attributes are

owned by the class. Some of these attributes may represents the end of binary associations, see also Figure

91. In this case the instance of Class2 is navigable via the instance of the owning class Class1.51

Figure 84 Class

Figure 85 shows that Class4 is inheriting all member elements from Class3. Or in other word, Class3 is a

generalization of Class4, Class4 is a specialization of Class3. This means that each instance of Class4 is also

an instance of Class3. An instance of the Class4 has the attributes attr1 and attr2 whereas instances of Class3

only have the attribute attr1.

Figure 85 Inheritance/Generalization

Figure 86 defines the required and allowed multiplicity/cardinality within an association between instances of

Class1 and Class2. In this example an instance of Class2 is always related to exactly one instance of Class1.

An instance of Class1 is either related to none, one or more (unlimited, i.e. no constraint on the upper bound)

instances of Class2. The relationship can change over time.

Multiplicity constraints can also be added to attributes and aggregations.

The notation of multiplicity is as follows:

 <lower-bound>.. <upper-bound>

51 „Navigability notation was often used in the past according to an informal convention, whereby non-navigable

ends were assumed to be owned by the Association whereas navigable ends were assumed to be owned by

the Classifier at the opposite end. This convention is now deprecated. Aggregation type, navigability, and end

ownership are separate concepts, each with their own explicit notation. Association ends owned by classes

are always navigable, while those owned by associations may be navigable or not. [47]”

178 | PART 1

Where <lower-bound> is a value specification of type Integer - i.e. 0, 1, 2, … - and <upper-bound> is a value

specification of type UnlimitedNatural. The star character (*) is used to denote an unlimited upper bound.

The default is 1 for lower-bound and upper-bound.

Figure 86 Multiplicity

A multiplicity element represents a collection of values. The default is a set, i.e. it is not ordered and the

elements within the collection are unique, i.e. contain no duplicates. In Figure 87 an ordered collection is

shown: the instances of Class2 related to an instance of Class1 are ordered. The stereotype <<ordered>> is

used to denote that the relationship is ordered.

Figure 87 Ordered Multiplicity

Figure 88 shows that the member ends of an association can be named as well. I.e. an instance of Class1 can

be in relationship “relation” to an instance of Class2. Vice versa the instance of Class2 is in relationship

“reverseRelation” to the instance of Class1.

Figure 88 Association

Figure 89 shows a composition, also called a composite aggregation. A composition is a binary association. It

groups a set of instances. The individuals in the set are typed as specified by Class2. The multiplicity of

instances of Class2 to Class1 is always 1 (i.e. upper-bound and lower-bound have value “1”). One instance of

Class2 belongs to exactly one instance of Class1. There is no instance of Class2 without a relationship to an

instance of Class1. In Figure 90 the composition is shown using an association relationship with a filled

diamond as composition adornment.

Figure 89 Composition (composite aggregation)

Figure 90 show an aggregation. An aggregation is a binary association. In contrast to a composition an

instance of Class2 can be shared by several instances of Class1. In Figure 90 the shared aggregation is shown

using an association relationship with a hallow diamond as aggregation adornment.

ANNEX | 179

Figure 90 Aggregation

Figure 91 shows that the attribute notation can be used for an association end owned by a class. In this

example the attribute name is “attr” and the elements of this attribute are typed with Class2. The multiplicity,

here “0..*”, is added in square brackets. If the aggregation is ordered then this is added in curly brackets like

in this example.

Figure 91 Navigable Attribute Notation for Associations

Figure 92 shows a class with three attributes with primitive types and default values. When a property with a

default value is instantiated, in the absence of some specific setting for the property, the default value is

evaluated to provide the initial values of the property.

Figure 92 Default Value

Figure 93 shows that there is a dependency relationship between Class1 and Class2. In this case the

dependency means that Class1 depends on Class2. Why is this: because the type of attribute attr depends on

the specification of class Class2. A dependency is shown as dashed arrow between two model elements.

Figure 93 Dependency

Figure 94 shows an abstract class. It uses the stereotype <<abstract>>. There are no instances of abstract

classes. They are typically used to specific member elements that are then inherited by non-abstract classes.

Figure 94 Abstract Class

Figure 95 shows a package with name “Package2”. A package is a namespace for its members. In this

example the member belonging to Package2 is class Class2.

180 | PART 1

Figure 95 Package

Figure 96 shows that all elements in Package2 are imported into the namespace defined by Package1. This

is a special dependency relationship between the two packages with stereotype <<import>>.

Figure 96 Imported Package

An enumeration is a data type whose values are enumerated as literals. Figure 97 shows an enumeration with

name “Enumeration1”. It contains two literal values, “a” and “b”. It is a class with stereotype <<enumeration>>.

The literals owned by the enumeration are ordered.

Figure 97 Enumeration52

Figure 98 show the definition of the data type with name “DataType1”. A data type is a type whose instances

are identified only by their value. It is a class with stereotype <<dataType>>.

Figure 98 Data Type

Figure 99 shows a primitive data type with name “int”. Primitive data types are predefined data types, without

any substructure. The primitive data types are defined outside UML.

Figure 99 Primitive Data Type

Figure 100 shows how a note can be attached to an element, in this example to class “Class1”.

52 In Enterprise Architect the single enumeration values also have a stereotype <<enum>>, each.

ANNEX | 181

Figure 100 Note

Figure 101 shows how a constraint is attached to an element, in this example to class “Class1”.

Figure 101 Constraint

ii. NOTES TO GRAPHICAL REPRESENTATION

In the following specific graphical modelling rules used in this specification are explained that are not included

in this form in [47].

Figure 102 shows different graphical representations of a composition (composite aggregation). In Variant A)

a relationship with a filled aggregation diamond is used. In Variant B) an attribute with the same semantics is

defined. And in Variant C) the implicitly assumed default name of the attribute in Variant A) is explicitly stated

as such. In this document notation B) is used.

As a default it is assumed that only the end member of the association is navigable, i.e. it is possible to navigate

from an instance of Class1 to the owned instance of Class2 but not vice versa. If there is no name for the end

member of the association given then it is assumed that the name is identical to the class name but starting

with a small letter – compare to Variant C).

Class2 instance does only exist if parent object of type Class1 exists.

Figure 102 Graphical Representations of Composite Aggregation/Composition

In Figure 103 different representations of a shared aggregation are shown. In a shared aggregation a Class2

instance can exist independent of the existence of an Class1 instance. It is just referencing the instances of

Class2. In Variant B) an attribute with the same semantics is defined. The reference is denoted by a star added

after the type of the attribute.

182 | PART 1

As a default it is assumed that only the end member of the aggregation association is navigable, i.e. it is

possible to navigate from an instance of Class1 to the owned instance of Class2 but not vice versa. Otherwise

Variant B) would not be identical to Variant A).

A speciality in Figure 103 is that the aggregated instances are referables in the sense of the Asset

Administration Shell metamodel (i.e. they inherit from the predefined abstract class “Referable”). This is why

Variant B) is identical to Variant A). This would not be the case for non-referable elements in the metamodel.

The structure of a reference to a model element of the Asset Administration Shell is explicitly defined. A model

reference consists of an ordered list of keys. The last key in the key chain shall reference an instance of type

Class2 (i.e. Reference/type equal to “Class2”).

Figure 103 Graphical Representation of Shared Aggregation

Figure 104 show different graphical representations of generalization. Variant A) is the classical graphical

representation as defined in [47]. Variant B) is a short form if Class1 is not on the same diagram. To see from

which class Class3 is inheriting the name of the class is depicted in the upper right corner.

Variant C) is not only showing from which class Class3 instances are inheriting but also what they are

inheriting. This is depicted by the class name it is inheriting from followed by “::” and then the list of all inherited

elements – here attribute class2. Typically, the inherited elements are not shown.

ANNEX | 183

Figure 104 Graphical Representation of Generalization/Inheritance

In Figure 105 different graphical notations for enumerations in combination with inheritance are shown. In

Variant A) enumeration “Enumeration1” additionally contains the literals as defined by “Enumeration2”. Note:

the direction of inheritance is opposite to the one for class inheritance. This can be seen in Variant C) that

defines the same enumerations but without inheritance. In Variant B) another graphical notation is shown that

makes it visible which literals are inherited by which enumeration. The literals within an enumeration are

ordered so the order of classes it is inheriting from is important.

Figure 105 Graphical Representation for Enumeration with Inheritance

Figure 106 Graphical Representation for deprecated classes

In Figure 106 a class being deprecated is shown. The class is marked by the stereotype

„Deprecated“.

184 | PART 1

ANNEX E. METAMODEL UML WITH INHERITED

ATTRIBUTES
In this annex some UML diagrams are shown together with all attributes inherited for better overview.

Note: The abstract classes are numbered h0_, h1_ etc. but Aliases are defined for them without this prefix. The
reason for this naming is that in the tooling used for UML modelling (Enterprise Architect) no order for inherited
classes can be defined, they are ordered in an alphabetical way.

Figure 107 Core Model with Inherited Attributes

ANNEX | 185

Figure 108 Model for Submodel Elements with Inherited Inheritance

186 | PART 1

ANNEX F. METAMODEL CHANGES

i. GENERAL

In this annex the changes from version to version of the metamodel are listed together with major changes in

overall document. Non-backward compatible changes (nc) are marked as such.

nc=”x” means not backward compatible, if no value is added in table then the change is backward compatible.

nc=”(x)” means that change made was implicitly contained or stated in document before but now being

formalized. Therefore, the change is considered to be backward compatible.

Changes for the security part of the metamodel are listed in separate tables.

ii. CHANGES V3.0RC02 VS. V2.0.1

A. METAMODEL CHANGES V3.0RC02 VS. V2.0.1 W/O SECURITY PART

Note to reader: if you already implemented the changes done in V3.0RC01 then refer to Annex iii. This Annex is for
reader familiar with V2.0.x only.

Major changes:

• CHANGED: Split of SubmodelElementCollection into SubmodelElementList (with orderRelevant) and

SubmodelElementCollection

• CHANGED: Adding reference type and referredSemanticId to Reference; Local and Parent attributes

removed from Reference. Logical enumeration concept updated. Some renaming and some new

enumerations. Adding constraint for references.

• CHANGED: Reference/type now as optional part of string serialization of reference

• CHANGED: idType from identifier removed, ID now string

• CHANGED: idShort of Referable now optional + Constraints added with respect to ID and idShort,

includes that idShort of Submodels etc. do not need to be unique in the context of an

AssetAdministrationShell any longer

• CHANGED: semanticId not mandatory any longer for SubmodelElement

• CHANGED: Revised concept on handling of Asset and assetIdentificationModel (assetInformation),

Asset removed, no Asset/billOfMaterial any longer. Specific asset IDs added.

• REMOVED: ConceptDictionaries removed, not supported any longer

• REMOVED: Views removed, not supported any longer

• NEW: Event and BasicEvent updated and renamed to EventElement and BasicEventElement

• NEW: Checksum introduced for Referables

• REMOVED: security attribute removed from Asset Administration Shell but Access Control still part of

the specification

• ENHANCED: DataTypeIEC61360 extended with values for IRI, IRDI, BLOB, FILE + corresponding

new constraints added

• ENHANCED: Removed and splitted into DataTypeDefXsd and DataTypeDefRdf. Some types

excluded and not supported

• CHANGED: Extracted and not part of this specification any longer: mapping rules for different

serializations + Schemata + Example in different serializations

• EDITORIAL: Text updated, no kind column any longer in class tables, instead notation of

ModelReference<{Referable}>. New table for Primitives/Data Types

• EDITORIAL: New Clause “Introduction”

• EDITORIAL: New Clause “Matching strategies for semantic identifiers”

• Constraints implicitly contained in text were formalized and numbered (normative)

• NEW: Environment explicitly part of UML (was part of serializations from the beginning)

ANNEX | 187

• NEW: supplemental Semantic IDs

• NEW: Qualifier/kind (TemplateQualifier, ConceptQualifier, ValueQualifier)

Bugfixes:

• bugfix annotation AnnotatedRelationship is of type aggr and not ref* (diagram was correct)

• bugfix specification of ValueList and ValueReferencePairType, no data types, normal classes

• bugfix table specifications w.r.t. kind of attribute (from aggr to attr – column kind was removed, see

above)

• bugfix data type specification LangStringSet (no diagram and table any longer)

• bugfix enumeration ReferableElements, no ConceptDictionary any longer + adding new elements like

new submodel elements SubmodelElementList. Note: ReferableElements was substituted by

AasSubmodelElements and Aas Identifiables.

• Entity/globalAssetId diagram (table was correct): Type change from reference of Reference* to

Reference

Table 14 Changes w/o Security

nc V3.0RC02 Change w.r.t. V2.0.1 Comment

 AdministrativeInformation Bugfix: Added Stereotype “DataType”

 AnnotatedRelationship/annotation
Bugfix: Type changed from

ModelReference<DataElement> to DataElement

 anySimpleTypeDef Type removed, was not used in any class definition

any longer, was mentioned in Text only.

x Asset
Removed, asset referenced via

AssetInformation/globalAssetId only

x AssetAdministrationShell/asset Removed, substituted by

AssetAdministrationShell/assetInformation (but no

reference any longer but an aggregation)

x AssetAdministrationShell/conceptDictionaries Removed

x AssetAdministrationShell/security

Removed

Note: Security is still part of the Asset Administration

Shell, but the Asset Administration Shell and its

elements are referenced from Security.

 AssetAdministrationShell/view Removed, Views not langer supported

x BasicEvent Renamed to BasicEventElement

x ConceptDictionary Removed

x Constraint
Abstract class removed. Formula now used in

Security part only

(x) DataTypeDef

Removed and splitted into DataTypeDefXsd and

DataTypeDefRdf. Some types excluded and not

supported (see notes in corresponding clause)

Before: just string allowing any xsd simple type as

string

+ added prefix xs: or rdf:, resp., to every value in

enumeration

188 | PART 1

nc V3.0RC02 Change w.r.t. V2.0.1 Comment

x Entity/asset Removed, substituted by Entity/globalAssetId and

Entity/specificAssetId

x Event Renamed to EventElement

x Extension/refersTo Type changed from Reference to ModelReference

x Extension/valueType
Type changed from DataTypeDef to

DataTypeDefXsd

x File/mimeType
Renamed to contentType + Type changed from

MimeType to ContentType

x Formula
Now abstract class

Formula now used in Security part only

x Formula/dependsOn Removed since formula language not yet defined

x Identifiable/identification
Removed

Substituted by Identifiable/id

x IdentifiableElements Renamed to AasIdentifiables

x Identifier

Type changed

Before struct class with two attributes: id and

idType. Now string data type only.

 IdentifierType
Enumeration removed because no idType any

longer

x Key/idType removed

x Key/local Local attribute removed.

(x) KeyElements

Renamed to KeyTypes

The elements remain except for new
SubmodelElementList, and renamed
submodel elements Event and
BasicEvent to EventElement and
BasicEventElement

 KeyType
Enumeration removed because no Key/idType any

longer

 LocalKeyType
Enumeration removed because no Key/idType any

longer

x MimeType Type name changed to ContentType

 Property/valueType
Type changed from DataTypeDef to

DataTypeDefXsd

x Qualifiable/qualifier Type changed from Constraint to Qualifier

 Qualifier
Does not inherit from abstract class “Constraint” any

longer

 Qualifier/valueType
Type changed from DataTypeDef to

DataTypeDefXsd

ANNEX | 189

nc V3.0RC02 Change w.r.t. V2.0.1 Comment

 Range/valueType
Type changed from DataTypeDef to

DataTypeDefXsd

 Referable/idShort Now optional, was mandatory

x Referable/parent Parent attribute removed.

x ReferableElements
Substituted with enumeration

AasSubmodelElements and AasIdentifiables

x ReferableElements/AccessPermissionRule

Removed from Enumeration,

AccessPermissionRule is not referable any longer

Not part of new AasReferableNonIdentifiables

x ReferableElement/BasicEvent
Renamed to BasicEventElement

Now part of AasSubmodelElements

(x) ReferablesElements/ConceptDictionary

Bugfix: ConceptDictionary removed from

enumeration since ConceptDictionary not part of

specification any longer

Not part of new KeyTypes

x ReferableElements/Event
Renamed to EventElement

Now part of AasSubmodelElements

 RelationshipElement/first
Type changes from model reference Referable to

Reference (global or model reference)

 RelationshipElement/second
Type changes from model reference Referable to

Reference (global or model reference)

 ValueDataType

Before as specified via DataTypeDef, now

any xsd atomic type as specified via

DataTypeDefXsd

 x View Removed

Table 15 New Elements in Metamodel w/o Security

nc V3.0RC02 vs. V2.0.1 New Elements Comment

 AasSubmodelElements New enumeration used for

References

Before ReferableElements

 AasIdentifiables New enumeration used for

References, includes abstract

Identifiable

Before Identifiables

 AasReferableNonIdentifiables New enumeration used for

References

 AasReferables New enumeration used for

References, includes abstract

Referable

x AssetAdministrationShell/assetInformation substitute for

AssetAdministrationShell/asset but

190 | PART 1

nc V3.0RC02 vs. V2.0.1 New Elements Comment

no reference any longer but an

aggregation

 AssetInformation with attributes/functionality from

former class Asset because not

specific to Asset but AAS

 AssetInformation/assetKind Former Asset/assetKind

 AssetInformation/globalAssetId Former Asset/identification/id

 AssetInformation/specificAssetId Former

Asset/assetIdentificationModel

 AssetInformation/thumbnail Optional Attribute of new class

AssetInformation that was not

available in Asset class before

 BasicEventElement

Former name: BasicEvent

Was part of non-normative part

before

 BasicEventElement/direction

Former name: BasicEvent/observed

Was part of non-normative part

before

 BasicEventElement/lastUpdate Was part of non-normative part before

 BasicEventElement/messageBroker Was part of non-normative part before

 BasicEventElement/messageTopic Was part of non-normative part before

 BasicEventElement/minInterval Was part of non-normative part before

 BasicEventElement/maxInterval Was part of non-normative part before

 BasicEventElement/observed Was part of non-normative part before

 BasicEventElement/state Was part of non-normative part before

 ContentType Former name: MimeType

 dateTimeStamp
New data type for metamodel as used

in EventPayload

 DataTypeDefRdf

Enumeration for types of Rdf + added

prefix rdf: to every value in

enumeration

 DataTypeDefXsd

Enumeration consisting of

enumerations

decimalBuildInTypes,

durationBuildInTypes, PrimitiveTypes

that correspond to anySimpleTypes of

xsd.

+ added prefix xs: to every value in

enumeration

 Direction
New Enumeration for

BasicEventElement

ANNEX | 191

nc V3.0RC02 vs. V2.0.1 New Elements Comment

 Environment

New class for entry point for Asset

Administration Shells, submodels and

concept descriptions.

 EventElement Former name: Event

 EventPayload New class for event payload

 EventPayload/observableSemanticId Was part of non-normative part before

 EventPayload/payload Was part of non-normative part before

 EventPayload/source Was part of non-normative part before

 EventPayload/sourceSemanticId Was part of non-normative part before

 EventPayload/subjectId Was part of non-normative part before

 EventPayload/timestamp Was part of non-normative part before

 Extension New class, part of new abstract class

HasExtensions

 FragmentKeys New enumeration used for

References

 GenericFragmentKeys New enumeration used for

References

 GenericGloballyIdentifiers New enumeration used for

References

 GloballyIdentifiables New enumeration used for

References

 HasExtensions New abstract class, inherited by

Referable

 HasSemantics/supplementalSemanticId New attribute

 Identifiable/id Substitute for Identifiable/identification

 IdentifierKeyValuePair New class for

AssetInformation/specificAssetId

 KeyTypes

Before: KeyElements

New submodel element

SubmodelElementList added,

renamed submodel elements Event

and BasicEvent to EventElement and

BasicEventElement

 Qualifier/kind New attribute for Qualifier

 QualifierKind New enumeration for Qualifier/kind

 PrimitiveTypes Enumeration for DataTypeDefXsd

 Referable/checksum New optional attribute for all referables

 Referable/displayName New optional attribute for all referables

 Reference/referredSemanticId New optional attribute for Reference

192 | PART 1

nc V3.0RC02 vs. V2.0.1 New Elements Comment

x Reference/type
New mandatory attribute for

Reference

 ReferenceTypes New enumeration for Reference/type

 StateOfEvent
New enumeration for

BasicEventElement

 SpecificAssetId
New type for

AssetInformation/specificAssetId

 SpecificAssetId/name
New type for

AssetInformation/specificAssetId

 SpecificAssetId/value
B New type for

AssetInformation/specificAssetId

 SpecificAssetId/externalSubjectId

New type for

AssetInformation/specificAssetId

See Attribute Based Access Control

(ABAC) for subject concept

 SubmodelElementElements
Enumeration for submodel elements

(split of ReferableElements)

 SubmodelElementList
Before SubmodelElementCollection

was used for lists and structs

 SubmodelElementList/orderRelevant
Similar to

SubmodelElementCollection/ordered

 SubmodelElementList/value

Similar to

SubmodelElementCollection/value

but ordered and with all elements

having the same semanticId

 SubmodelElementList/semanticIdListElement
Attribute of new class

SubmodelElementList

 SubmodelElementList/typeValueListElement
Attribute of new class

SubmodelElementList

 SubmodelElementList/valueTypeListElement
Attribute of new class

SubmodelElementList

Table 16 New, Changed or Removed Constraints w/o Security

Nc V3.0RC02

vs. V2.0.1

New, Update,

Removed,

Reformulated

Comment

 AASd-001 Removed Constraint AASd-001: In case of a referable element not being an identifiable

element this ID is mandatory and used for referring to the element in its name

space.

For namespace part see AASd-022

ANNEX | 193

Nc V3.0RC02

vs. V2.0.1

New, Update,

Removed,

Reformulated

Comment

53 AASd-003 Update idShort is case-sensitive and not case-insensitive

Constraint AASd-003: idShort of Referables shall be matched case-sensitive.

 AASd-005 Reformulated Constraint AASd-005: If AdministrativeInformation/version is not specified than

also AdministrativeInformation/revision shall be unspecified. This means, a

revision requires a version. if there is no version there is no revision neither.

Revision is optional.

 AASd-008

Removed Constraint AASd-008: The submodel

element value of an operation variable

shall be of kind=Template.

 AASd-010 Renamed Renamed and reformulated to AASs-010 (see NEW)

 AASd-011 Renamed Renamed and reformulated to AASs-011 (see NEW)

 AASd-012 Reformulated Constraint AASd-012: If both, the MultiLanguageProperty/value and the

MultiLanguageProperty/valueId are present then for each string in a specific

language the meaning must be the same as specified in

MultiLanguageProperty/valueId

 AASd-014 Reformulated Entity was changed

Constraint AASd-014: Either the attribute globalAssetId or specificAssetId of an

Entity must be set if Entity/entityType is set to “SelfManagedEntity”. They are

not existing otherwise.

(x) AASd-020 New Constraint AASd-020: The value of Property/value shall be consistent to the

data type as defined in Property/valueType.

(x) AASd-021 New Constraint AASd-021: Every qualifiable can only have one qualifier with the

same Qualifier/type.

 AASd-023 Removed No Asset any longer that can be referenced as alternative to global reference

Constraint AASd-023: AssetInformation/globalAssetId either is a reference to

an Asset object or a global reference.

x AASd-027 New Constraint AASd-027: idShort of Referables shall have a maximum length of

128 characters.

 AASd-050 New Version information in data specification ID updated to /3/0/RC02.
hasDataSpecification corrected to HasDataSpecification

Constraint AASd-050: If the DataSpecificationContent
DataSpecificationIEC61360 is used for an element then the value of
hasDataSpecification/dataSpecification shall contain the global reference to the
IRI of the corresponding data specification template https://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/3/0/RC02.

(x) AASd-

050b

New Constraint AASd-050b: If the DataSpecificationContent
DataSpecificationPhysicalUnit is used for an element then the value of
HasDataSpecification/dataSpecification shall contain the global reference to the
IRI of the corresponding data specification template https://admin-
shell.io/DataSpecificationTemplates/DataSpecificationPhysicalUnit0/3/0/RC02.

53 Every model valid for V3.0RC02 is still valid in V3.0RC01, however there might be implementations that

need to be changed if they assumed that the user can type case-insensitive names and get all elements that

match the name in an case-insensitive way.

194 | PART 1

Nc V3.0RC02

vs. V2.0.1

New, Update,

Removed,

Reformulated

Comment

x AASd-076 Removed Substituted by AASc-002. Simplified, no reference to concept description

 AASd-077 New Constraint AASd-077: The name of an extension within HasExtensions needs

to be unique.

 AASd-090 Update Exception: File and Blob data elements removed. Reformulated.

Constraint AASd-090: For data elements category (inherited by Referable) shall

be one of the following values: CONSTANT, PARAMETER or VARIABLE.

Default: VARIABLE

x AASd-076 Removed Substituted by AASc-002. Simplified, no reference to concept description

 AASd-077 New Constraint AASd-077: The name of an extension within HasExtensions needs

to be unique.

 AASd-090 Update Exception: File and Blob data elements removed. Reformulated.

Constraint AASd-090: For data elements category (inherited by Referable) shall

be one of the following values: CONSTANT, PARAMETER or VARIABLE.

Default: VARIABLE

 AASd-100 New Constraint AASd-100: An attribute with data type "string" is not allowed to be

empty.

 AASd-107 New Constraint AASd-107: If a first level child element in a SubmodelElementList

has a semanticId it shall be identical to

SubmodelElementList/semanticIdListElement.

 AASd-108 New Constraint AASd-108: All first level child elements in a SubmodelElementList

shall have the same submodel element type as specified in

SubmodelElementList/typeValueListElement.

 AASd-109 New Constraint AASd-109: If SubmodelElementList/typeValueListElement equal to

Property or Range SubmodelElementList/valueTypeListElement shall be set

and all first level child elements in the SubmodelElementList shall have the the

value type as specified in SubmodelElementList/valueTypeListElement.

 AASd-114 New Constraint AASd-114: If two first level child elements in a SubmodelElementList

have a semanticId then they shall be identical.

 AASd-115 New Constraint AASd-115: If a first level child element in a SubmodelElementList

does not specify a semanticId then the value is assumed to be identical to

SubmodelElementList/semanticIdListElement.

 AASd-116 New Constraint AASd-116: “globalAssetId” (case-insensitive) is a reserved key. If

used as value for SpecificAssetId/name IdentifierKeyValuePair/value shall be

identical to AssetInformation/globalAssetId.

 AASd-117 New Needed because Referable/idShort now optional

Constraint AASd-117: idShort of non-identifiable Referables not equal to

SubmodelElementList shall be specified (i.e. idShort is mandatory for all

Referables except for SubmodelElementLists and all Identifiables).

 AASd-118 New Because of new attribute supplementalSemanticId for HasSemantics

Constraint AASd-118: If there is a supplemental semantic ID

(HasSemantics/supplementalSemanticId) defined then there shall be also a

main semantic ID (HasSemantics/semanticId).

ANNEX | 195

Nc V3.0RC02

vs. V2.0.1

New, Update,

Removed,

Reformulated

Comment

 AASd-119 New New Qualifier/kind attribute

Constraint AASd-119: If any Qualifier/kind value of a Qualifiable/qualifier is

equal to TemplateQualifier and the qualified element inherits from “hasKind”

then the qualified element shall be of kind Template (HasKind/kind =

"Template").

 AASd-120 New For new submodel element SubmodelElementList

Constraint AASD-120: idShort of submodel elements within a

SubmodelElementList shall not be specified.

 AASd-121 New Constraint AASd-121: For References the type of the first key of

Reference/keys shall be one of GloballyIdentifiables.

 AASd-122 New Constraint AASd-122: For global references, i.e. References with

Reference/type = GlobalReference, the type of the first key of Reference/keys

shall be one of GenericGloballyIdentifiables.

 AASd-123 New Constraint AASd-123: For model references, i.e. References with

Reference/type = ModelReference, the type of the first key of Reference/keys

shall be one of AasIdentifiables.

 AASd-124 New Constraint AASd-124: For global references, i.e. References with

Reference/type = GlobalReference, the last key of Reference/keys shall be

either one of GenericGloballyIdentifiables or one of GenericFragmentKeys.

 AASd-125 New Constraint AASd-125: For model references, i.e. References with

Reference/type = ModelReference, with more than one key in Reference/keys

the type of the keys following the first key of Reference/keys shall be one of

FragmentKeys.

 AASd-126 New Constraint AASd-126: For model references, i.e. References with

Reference/type = ModelReference, with more than one key in Reference/keys

the type of the last Key in the reference key chain may be one of

GenericFragmentKeys or no key at all shall have a value out of

GenericFragmentKey.

 AASd-127 New Constraint AASd-127: For model references, i.e. References with

Reference/type = ModelReference, with more than one key in Reference/keys

a key with type FragmentReference shall be preceeded by a key with type File

or Blob. All other AAS fragments, i.e. type values out of AasSubmodelElements,

do not support fragments.

 AAS-128 New Constraint AASd-128: For model references, i.e. References with

Reference/type = ModelReference, the Key/value of a Key preceeded by a Key

with Key/type=SubmodelElementList is an integer number denoting the position

in the array of the submodel element list.

196 | PART 1

B. METAMODEL CHANGES V3.0RC02 VS. V2.0.1 – DATA SPECIFICATION
IEC61360

Table 17 Changes w.r.t. Data Specification IEC61360

nc V3.0RC02 Change w.r.t. V2.0.1 Comment

 DataSpecification

Stereotype <<Template>> added + does not

inherit from Identifiable any longer because

Data Specification are handled in a different

way

Some attributes are added to

DataSpecification as new attributes like id,

administration and description.

 DataSpecification/category
Removed, was inherited before by

Identifiable

 DataSpecification/displayName
Removed, was inherited before by

Identifiable

 DataSpecification/idShort
Removed, was inherited before by

Identifiable

x DataSpecificationIEC61360/value Type changed from ValueDataType to string

 DataSpecificationIEC61360/valueId
Removed, the valueId is identical to the ID of

the concept description

 DataSpecificationContent Stereotype <<Template>> added

x DataTypeIEC61360

Some new values were added: BLOB, FILE,

HTML, IRDI. URL renamed to IRI.

See separate entries for individual changes.

x DataTypeIEC61360/URL Renamed to IRI

 ValueList/valueReferencePairs
Bugfix, was

ValueList/valueReferencePairTypes before

x ValueReferencePair/value Type changed from ValueDataType to string

Table 18 New Elements in Metamodel DataSpecification IEC61360

nc V3.0RC02 vs. V2.0.1 Comment

 DataSpecification/administration Was inherited before by Identifiable

 DataSpecification/id Was inherited before by Identifiable

 DataSpecification/desciption Was inherited before by Identifiable

 DataTypeIEC61360/BLOB New value

 DataTypeIEC61360/FILE New value

 DataTypeIEC61360/HTML New value

 DataTypeIEC61360/IRDI New value

 DataTypeIEC61360/IRI
Converted Iri to CamelCase and renamed to Iri

from URL

Table 19 New, Changed or Removed Constraints Data Specification IEC61360

ANNEX | 197

nc V3.0RC02

vs. V2.0.1

New, Update,

Removed,

Reformulated

Comment

 AASc-002 New Updated version of AASd-076, renamed to AASC-002 because

applicable to data specification IEC61360

Constraint AASc-002: DataSpecificationIEC61360/preferredName

shall be provided at least in English

(x) AASc-003 New Constraint AASc-003: For a ConceptDescription with category

VALUE using data specification template IEC61360 (http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

DataSpecificationIEC61360/value shall be set.

(x) AASc-004 New Constraint AASc-004: For a ConceptDescription with category

PROPERTY or VALUE using data specification template IEC61360

(http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

- DataSpecificationIEC61360/dataType is mandatory and shall be

defined.

(x) AASc-005 New Constraint AASc-005: For a ConceptDescription with category

REFERENCE using data specification template IEC61360

(http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

- DataSpecificationIEC61360/dataType is STRING by default.

(x) AASc-006 New Constraint AASc-006: For a ConceptDescription with category

DOCUMENT using data specification template IEC61360

(http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

- DataSpecificationIEC61360/dataType shall be one of the following

values: STRING or URL.

(x) AASc-007 New Constraint AASc-007: For a ConceptDescription with category

QUALIFIER_TYPE using data specification template IEC61360

(http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

- DataSpecificationIEC61360/dataType is mandatory and shall be

defined.

(x) AASc-008 New Constraint AASc-008: For a ConceptDescriptions except for a

ConceptDescription of category VALUE using data specification

template IEC61360 (http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

- DataSpecificationIEC61360/definition is mandatory and shall be

defined at least in English.

(x) AASc-009 New Constraint AASc-009: If DataSpecificationIEC61360/dataType one

of: INTEGER_MEASURE, REAL_MEASURE,

RATIONAL_MEASURE, INTEGER_CURRENCY,

REAL_CURRENCY, then DataSpecificationIEC61360/unit or

DataSpecificationIEC61360/unitId shall be defined.

(x) AASc-010 New Constraint AASc-010: If DataSpecificationIEC61360/value is not

empty then DataSpecificationIEC61360/valueList shall be empty and

vice versa

198 | PART 1

C. METAMODEL CHANGES V3.0RC02 VS. V2.0.1 – SECURITY PART

Changes:

- Removed: Deprecated: policy decision point, policy enforcement point and policy information points

are not part of information model but of server infrastructure hosting the Asset Administration Shells

- Removed: Certificate Handling not part of information model but of server infrastructure hosting the

Asset Administration Shells

Table 20 Changes w.r.t. Security

nc V3.0RC02 Change w.r.t. V2.0.1 Comment

x AccessControlPolicyPoints/policyAdministrationoint Type changed from

PolicyAdministrationPoint to

AccessControl

x AccessControlPolicyPoints/policyDecisionPoint Removed

x AccessControlPolicyPoints/policyEnforcementPoint Removed

x AccessControlPolicyPoints/policyInformationPoint Removed

x AccessPermissionRule Does not inherit from Referable any longer

Does not inherit from Qualifiable any

longer

x BlobCertificate Removed

x Certificate Removed

x Formula Now abstract class, only used in security

part now (not used in Qualifiables any

longer)

x Formula/dependsOn Removed attribute

x PolicyAdministrationPoint Removed

x policyDecisionPoint Removed

x policyEnforcementPoint Removed

x policyInformationPoints Removed

x Security/certificate Removed

x Security/requiredCertificateExtension Removed

Table 21 New Elements in Metamodel Security

nc V3.0RC02 vs. V2.0.1 Comment

 AccessPermissionRule/constraint Substitute for inherited attributes from

Qualifiable

Table 22 New, Changed or Removed Constraints Security

nc V3.0RC02

vs. V2.0.1

New, Update,

Removed,

Reformulated

Comment

 AASd-015 Removed Renamed to AASs-015 (see NEW)

 AASs-009 Removed Removed since class PolicyAdministrationPoint was removed

ANNEX | 199

nc V3.0RC02

vs. V2.0.1

New, Update,

Removed,

Reformulated

Comment

Constraint AASs-009: Either there is an external policy

administration point endpoint defined

(PolicyAdministrationPoint/externalPolicyDecisionPoints=true) or

the AAS has its own access control

 AASs-010 NEW Reformulation of AASd-010

Constraint AASs-010: The property referenced in

Permission/permission shall have the category “CONSTANT”.

 AASs-011 NEW Reformulation of AASd-011

Constraint AASs-011: The property referenced in

Permission/permission shall be part of the submodel that is

referenced within the “selectablePermissions” attribute of

“AccessControl”.

 AASs-015 NEW Constraint AASs-015: Every data element in

SubjectAttributes/subjectAttributes shall be part of the submodel

that is referenced within the “selectableSubjectAttributes” attribute

of “AccessControl”.

200 | PART 1

iii. CHANGES V3.0RC02 VS. V3.0RC01

A. METAMODEL CHANGES V3.0RC02 VS. V3.0RC01 W/O SECURITY PART

Major changes:

• CHANGED: Split of SubmodelElementCollection into SubmodelElementList (with orderRelevant) and

SubmodelElementCollection

• CHANGED: Adding reference type and referredSemanticId to Reference; Local and Parent attributes

removed from Reference. Logical enumeration concept updated. Some renaming. Adding constraint

for references.

• CHANGED: Reference/type now as optoinal part of string serialization of reference

• CHANGED: idType from identifier removed, ID now string.

• CHANGED: idShort of Referable now optional + Constraints added with respect to id and idShort

• REMOVED: AssetInformation/billOfMaterial removed

• REMOVED: Asset removed

• REMOVED: Views removed, not supported any longer

• NEW: Event and BasicEvent updated and renamed to EventElement and BasicEventElement

• NEW: Checksum introduced for Referables

• REMOVED: security attribute removed from Asset Administration Shell but Access Control still part of

the specification

• DataTypeIEC61360 extended with values for IRI, IRDI, BLOB, FILE + corresponding new constraints

added

• ENHANCED: Removed and splitted into DataTypeDefXsd and DataTypeDefRdf. Some types

excluded and not supported

• CHANGED: Extracted and not part of this specification any longer: mapping rules for different

serializations + Schemata + Example in different serializations

• EDITORIAL: Text updated, no kind column any longer in class tables, instead notation of

ModelReference<{Referable}>. New table for Primitives/Data Types

• EDITORIAL: New Clause “Introduction”

• EDITORIAL: New Clause “Matching strategies for semantic identifiers”

• NEW: Environment

• NEW: supplemental Semantic IDs

• NEW: Qualifier/kind

• CHANGED: Renaming of IdentifierKeyValuePair used in AssetInformation to SpecificAssetId

Bugfixes:

• bugfix annotation AnnotatedRelationship is of type aggr and not ref* (diagram was correct)

• bugfix specification of ValueList and ValueReferencePairType, no data types, normal classes

• bugfix table specifications w.r.t. kind of attribute (from aggr to attr – column kind was removed, see

above)

• bugfix data type specification LangStringSet (no diagram and table any longer)

• bugfix enumeration ReferableElements, no ConceptDictionary any longer + adding new elements like

new submodel elements SubmodelElementList

• Entity/globalAssetId diagram (table was correct): Type change from reference of Reference to

Reference (from Reference* to Reference)

Table 23 Changes w/o Security

nc V3.0RC02 Change w.r.t. V3.0RC01 Comment

 AdministrativeInformation
Bugfix: Added Stereotype

“DataType”

ANNEX | 201

nc V3.0RC02 Change w.r.t. V3.0RC01 Comment

 AnnotatedRelationship/annotation

Type changed from

ModelReference<DataElement> to

DataElement

x Asset
Removed, asset referenced via

globalAssetId only

x AssetAdministrationShell/security

Removed

Note: Security is still part of the

Asset Administration Shell, but the

Asset Administration Shell and its

elements are referenced from

Security.

 AssetAdministrationShell/view
Removed, Views not langer

supported

x AssetInformation/billOfMaterial Removed

x AssetInformation/defaultThumbnail
Type changed from File to

Resource

x AssetInformation/specificAssetId

Type changed from

IdentifierKeyValuePair to

SpecificAssetId

x BasicEvent Renamed to BasicEventElement

x Constraint
Abstract class removed. Formula

now used in Security part only

(x) DataTypeDef

Splitted into DataTypeDefXsd and

DataTypeDefRdf. Some types

excluded and not supported (see

notes in corresponding clause)

Before: just string allowing all

anySimpleTypes of xsd and

langString of rdf

 Entity/globalAssetId

Bugfix:

Type change from reference of

Reference to Reference (from

Reference* to Reference)

x

Event
Renamed to EventElement

x Extension/refersTo
Type changed from Reference to

ModelReference

x File/mimeType

Renamed to contentType + Type

name changed from MimeType to

ContentType

x Formula

Now abstract class

Formula now used in Security part

only

202 | PART 1

nc V3.0RC02 Change w.r.t. V3.0RC01 Comment

x Formula/dependsOn
Removed since formula language

not yet defined

x Identifiable/identification
Removed

Substituted by Identifiable/id

(x) IdentifiableElements Renamed to AasIdentifiables

x Identifier

Type changed

Before struct class with two

attributes: id and idType. Now

string data type only.

x IdentifierKeyValuePair
Renamed to SpecificAssetId and

change of attribute “key” to “name”

 IdentifierType
Enumeration removed because no

idType any longer

x Key/idType removed

(x) KeyElements

Renamed to KeyTypes

The elements remain except
for new
SubmodelElementList,
and renamed
submodel elements
Event and BasicEvent
to EventElement and
BasicEventElement

 KeyType
Enumeration removed because no

Key/idType any longer

 LocalKeyType
Enumeration removed because no

Key/idType any longer

x MimeType
Type name changed to

ContentType

 Property/valueType
Type changed from DataTypeDef

to DataTypeDefXsd

x Qualifiable/qualifier
Type changed from Constraint to

Qualifier

 Qualifier
Does not inherit from abstract class

“Constraint” any longer

 Qualifier/valueType
Type changed from DataTypeDef

to DataTypeDefXsd

 Range/valueType
Type changed from DataTypeDef

to DataTypeDefXsd

 Referable/idShort Now optional, was mandatory

x ReferableElements

Substituted with enumeration

AasSubmodelElements and

AasIdentifiables

ANNEX | 203

nc V3.0RC02 Change w.r.t. V3.0RC01 Comment

x ReferableElements/AccessPermissionRule

Removed from Enumeration,

AccessPermissionRule is not

referable any longer

Not part of new

AasReferableNonIdentifiables

x ReferableElement/BasicEvent

Renamed to BasicEventElement

Now part of

AasSubmodelElements

(x) ReferablesElements/ConceptDictionary

Bugfix: ConceptDictionary removed

from enumeration since

ConceptDictionary not part of

specification any longer

Not part of new KeyTypes

x ReferableElements/Event

Renamed to EventElement

Now part of

AasSubmodelElements

 RelationshipElement/first

Type changes from model

reference Referable to Reference

(global or model reference)

 RelationshipElement/second

Type changes from model

reference Referable to Reference

(global or model reference)

 ValueDataType

Before as specified via

DataTypeDef, now

any xsd atomic type as specified

via DataTypeDefXsd

+ Prefix xs: added to every value in

list

x ValueList/valueReferencePairType
Bugfix: renamed to

ValueList/valueReferencePairs

 x View removed

Table 24 New Elements in Metamodel w/o Security

nc V3.0RC02 vs. V2.0RC01 New Elements Comment

 AasSubmodelElements New enumeration used for References

Before ReferableElements

 AasIdentifiables New enumeration used for References,

includes abstract Identifiable

Before Identifiables

 AasReferableNonIdentifiables New enumeration used for References

 AasReferables New enumeration used for References,

includes abstract Referable

204 | PART 1

nc V3.0RC02 vs. V2.0RC01 New Elements Comment

 BasicEventElement Former name: BasicEvent

 BasicEventElement/direction Former name: BasicEvent/observed

 BasicEventElement/lastUpdate

 BasicEventElement/messageBroker

 BasicEventElement/messageTopic

 BasicEventElement/minInterval

 BasicEventElement/maxInterval

 BasicEventElement/observed

 BasicEventElement/state

 ContentType Former name: MimeType

 DataTypeDefRdf
Enumeration for types of Rdf + added

prefix rdf: to every value in enumeration

 DataTypeDefXsd

Enumeration consisting of enumerations

decimalBuildInTypes,

durationBuildInTypes, PrimitiveTypes

that correspond to anySimpleTypes of

xsd.

+ added prefix xs: to every value in

enumeration

 dateTimeStamp
New data type for metamodel as used in

EventPayload

 decimalBuildInTypes Enumeration for DataTypeDef

 Direction
New Enumeration for

BasicEventElement

 durationBuildInTypes Enumeration for DataTypeDef

 Environment

New class for entry point for Asset

Administration Shells, submodels and

concept descriptions.

 EventElement Former name: Event

 EventPayload New class for event payload

 EventPayload/observableReference

 EventPayload/observableSemanticId

 EventPayload/payload

 EventPayload/source

 EventPayload/sourceSemanticId

 EventPayload/subjectId

 EventPayload/timestamp

 EventPayload/topic

ANNEX | 205

nc V3.0RC02 vs. V2.0RC01 New Elements Comment

 File/contentType Former name: mimeType

 FragmentKeys New enumeration used for References

 GenericFragmentKeys New enumeration used for References

 GenericGloballyIdentifiers New enumeration used for References

 GloballyIdentifiables New enumeration used for References

 HasSemantics/supplementalSemanticId New attribute

 Identifiable/id Substitute for Identifiable/identification

 KeyTypes

Before: KeyElements

New submodel element

SubmodelElementList added, renamed

submodel elements Event and

BasicEvent to EventElement and

BasicEventElement

 ModelReference New class inheriting from Reference

x Reference/type New mandatory attribute of Reference

 Reference/referredSemanticId New optional attribute of Reference

 PrimitiveTypes Enumeration for DataTypeDefXsd

 Qualifier/kind New attribute for Qualifier

 QualifierKind New enumeration for Qualifier/kind

 Referable/checksum

 SpecificAssetId
Before: IdentifierKeyValuePair, was

renamed

 SpecificAssetId/name
Before: IdentifierKeyValuePair/key, was

renamed

 SpecificAssetId/value Before: IdentifierKeyValuePair/value

 SpecificAssetId/externalSubjectId
Before:

IdentifierKeyValuePair/externalSubjectId

 StateOfEvent
New enumeration for

BasicEventElement

 SubmodelElementElements

Enumeration for submodel elements

(split of ReferableElements into

SubmodelElementElements and

IdentifiableElements)

 SubmodelElementList
Before SubmodelElementCollection was

used for lists and structs

 SubmodelElementList/orderRelevant
Similar to

SubmodelElementCollection/ordered

 SubmodelElementList/value

Similar to

SubmodelElementCollection/value but

ordered and with all elements having the

same semanticId

206 | PART 1

nc V3.0RC02 vs. V2.0RC01 New Elements Comment

 SubmodelElementList/semanticIdListElement
Attribute for new class

SubmodelElementList

 SubmodelElementList/typeValueListElement
Attribute for new class

SubmodelElementList

 SubmodelElementList/valueTypeListElement
Attribute for new class

SubmodelElementList

Table 25 New, Changed or Removed Constraints w/o Security

Nc V3.0RC02

vs.

V3.0RC01

New, Update,

Removed,

Reformulated

Comment

54 AASd-003 Update idShort is case-sensitive and not case-insensitive

Constraint AASd-003: idShort of Referables shall be matched case-

sensitive.

 AASd-005 Reformulated Constraint AASd-005: If AdministrativeInformation/version is not

specified than also AdministrativeInformation/revision shall be

unspecified. This means, a revision requires a version. if there is no

version there is no revision neither. Revision is optional.

 AASd-008

Removed Constraint AASd-008: The submodel

element value of an operation variable

shall be of kind=Template.

 AASd-023 Removed No Asset any longer that can be referenced as alternative to global

reference

Constraint AASd-023: AssetInformation/globalAssetId either is a

reference to an Asset object or a global reference.

 AASd-026 Removed SubmodelElementCollection was split into SubmodelElementList and

SubmodelElementRecord. No attribute allowDuplicates any longer.

Constraint AASd-026: If allowDuplicates==false then it is not allowed

that the collection contains several elements with the same semantics

(i.e. the same semanticId).

x AASd-027 New Constraint AASd-027: idShort of Referables shall have a maximum

length of 128 characters.

 AASd-050 Update Version information in data specification ID updated to /3/0/RC02.
hasDataSpecification corrected to HasDataSpecification

Constraint AASd-050: If the DataSpecificationContent
DataSpecificationIEC61360 is used for an element then the value of
HasDataSpecification/dataSpecification shall contain the global
reference to the IRI of the corresponding data specification template
https://admin-
shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/3/0/R
C02.

54 Every model valid for V3.0RC02 is still valid in V3.0RC01, however there might be implementations that

need to be changed if they assumed that the user can type case-insensitive names and get all elements that

match the name in an case-insensitive way.

ANNEX | 207

Nc V3.0RC02

vs.

V3.0RC01

New, Update,

Removed,

Reformulated

Comment

(x) AASd-

050b

New Constraint AASd-050b: If the DataSpecificationContent
DataSpecificationPhysicalUnit is used for an element then the value of
HasDataSpecification/dataSpecification shall contain the global
reference to the IRI of the corresponding data specification template
https://admin-
shell.io/DataSpecificationTemplates/DataSpecificationPhysicalUnit0/3/0
/RC02.

 AASd-

052a

Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-052a: If the semanticId of a Property references a
ConceptDescription then the ConceptDescription/category shall be one
of following values: VALUE, PROPERTY.

 AASd-

052b

Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-052b: If the semanticId of a MultiLanguageProperty
references a ConceptDescription then the ConceptDescription/category
shall be one of following values: PROPERTY.

 AASd-053 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-053: If the semanticId of a Range submodel element
references a ConceptDescription then the ConceptDescription/category
shall be one of following values: PROPERTY.

 AASd-054 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-054: If the semanticId of a ReferenceElement
submodel element references a ConceptDescription then the
ConceptDescription/category shall be one of following values:
REFERENCE.

 AASd-055 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-055: If the semanticId of a RelationshipElement or an
AnnotatedRelationshipElement submodel element references a
ConceptDescription then the ConceptDescription/category shall be one
of following values: RELATIONSHIP.

 AASd-056 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-056: If the semanticId of a Entity submodel element
references a ConceptDescription then the ConceptDescription/category
shall be one of following values: ENTITY. The ConceptDescription
describes the elements assigned to the entity via Entity/statement.

 AASd-057 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-057: The semanticId of a File or Blob submodel
element shall only reference a ConceptDescription with the category
DOCUMENT.

 AASd-058 Removed removed, still recommended; would be renamed to AASc if still needed

208 | PART 1

Nc V3.0RC02

vs.

V3.0RC01

New, Update,

Removed,

Reformulated

Comment

Constraint AASd-058: The semanticId of a Capability submodel element
shall only reference a ConceptDescription with the category
CAPABILITY.

 AASd-059 Removed removed, still recommended; would be renamed to AASc if still needed

SubmodelElementCollection was split into SubmodelElementList and
SubmodelElementCollection. AASd-092 and AASd-093 contain it.

Constraint AASd-059: If the semanticId of a SubmodelElementCollection

references a ConceptDescription then the category of the

ConceptDescription shall be COLLECTION or ENTITY.

 AASd-060 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-060: If the semanticId of a Operation submodel

element references a ConceptDescription then the category of the

ConceptDescription shall be one of the following values: FUNCTION.

 AASd-061 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-061: If the semanticId of a Event submodel element

references a ConceptDescription then the category of the

ConceptDescription shall be one of the following values: EVENT.

 AASd-062 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-062: If the semanticId of a Property references a

ConceptDescription then the ConceptDescription/category shall be one

of following values: APPLICATION_CLASS.

 AASd-063 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-063: If the semanticId of a Qualifier references a

ConceptDescription then the ConceptDescription/category shall be one

of following values: QUALIFIER.

 AASd-064 Removed Removed because there are not VIEWs any longer

Constraint AASd-064: If the semanticId of a View references a

ConceptDescription then the category of the ConceptDescription shall

be VIEW.

 AASd-065 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-065: If the semanticId of a Property or

MultiLanguageProperty references a ConceptDescription with the

category VALUE then the value of the property is identical to

ANNEX | 209

Nc V3.0RC02

vs.

V3.0RC01

New, Update,

Removed,

Reformulated

Comment

DataSpecificationIEC61360/value and the valueId of the property is

identical to DataSpecificationIEC61360/valueId.

 AASd-066 Removed removed, still recommended; would be renamed to AASc if still needed

Update because of renaming of ValueReferencePairType into

ValueReferencePair

Constraint AASd-066: If the semanticId of a Property or

MultiLanguageProperty references a ConceptDescription with the

category PROPERTY and DataSpecificationIEC61360/valueList is

defined the value and valueId of the property is identical to one of the

value reference pair types references in the value list, i.e.

ValueReferencePair/value or ValueReferencePair/valueId, resp.

 AASd-067 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-067: If the semanticId of a MultiLanguageProperty

references a ConceptDescription then

DataSpecificationIEC61360/dataType shall be

STRING_TRANSLATABLE.

 AASd-068 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-068: If the semanticId of a Range submodel element

references a ConceptDescription then

DataSpecificationIEC61360/dataType shall be a numerical one, i.e.

REAL_* or RATIONAL_*.

 AASd-069 Removed removed, still recommended; would be renamed to AASc if still needed

Constraint AASd-069: If the semanticId of a Range references a

ConceptDescription then DataSpecificationIEC61360/levelType shall be

identical to the set {Min, Max}.

(x) AASd-070 Renamed Now AASc-004.

(x) AASd-071 Renamed Now AASc-005

(x) AASd-072 Renamed Now AASc-006.

(x) AASd-073 Renamed Now AASc-007

(x) AASd-074 Renamed Now AASc-008

 AASd-075 Removed Content now documented as separate constraints, see Annex 0 b

Constraint AASd-075: For all ConceptDescriptions using data

specification template IEC61360 (http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

values for the attributes not being marked as mandatory or optional in

tables Table 8, Table 9, Table 10 and Table 11.depending on its category

are ignored and handled as undefined.

 AASd-076 Removed Substituted by AASc-002. Simplified, no reference to concept description

210 | PART 1

Nc V3.0RC02

vs.

V3.0RC01

New, Update,

Removed,

Reformulated

Comment

 AASd-080 Removed No Key/type GlobalReference any longer

Constraint AASd-080: In case Key/type == GlobalReference idType shall

not be any LocalKeyType (IdShort, FragmentId).

 AASd-081 Removed No Key/idType any longer

Constraint AASd-081: In case Key/type==AssetAdministrationShell

Key/idType shall not be any LocalKeyType (IdShort, FragmentId).

 AASd-090 Update Exception: File and Blob data elements removed. Reformulated.

Constraint AASd-090: For data elements category (inherited by

Referable) shall be one of the following values: CONSTANT,

PARAMETER or VARIABLE. Default: VARIABLE

 AASd-092 Removed removed, still recommended; would be renamed to AASc and updated

if still needed

SubmodelElementCollection was split into SubmodelElementList and

SubmodelElementCollection (here: SubmodelElementCollection)

Constraint AASd-092: If the semanticId of a SubmodelElementCollection
with SubmodelElementCollection/allowDuplicates == false references a
ConceptDescription then the ConceptDescription/category shall be
ENTITY.

 AASd-093 Removed removed, still recommended; would be renamed to AASc and updated

if still needed

SubmodelElementCollection was split into SubmodelElementList and
SubmodelElementStruct (here: SubmodelElementList)

Constraint AASd-093: If the semanticId of a SubmodelElementCollection
with SubmodelElementCollection/allowDuplicates == true references a
ConceptDescription then the ConceptDescription/category shall be
COLLECTION.

 AASd-107 New Constraint AASd-107: If a first level child element in a

SubmodelElementList has a semanticId it shall be identical to

SubmodelElementList/semanticIdListElement.

 AASd-108 New Constraint AASd-108: All first level child elements in a

SubmodelElementList shall have the same submodel element type as

specified in SubmodelElementList/typeValueListElement.

 AASd-109 New Constraint AASd-109: If SubmodelElementList/typeValueListElement

equal to Property or Range

SubmodelElementList/valueTypeListElement shall be set and all first

level child elements in the SubmodelElementList shall have the the value

type as specified in SubmodelElementList/valueTypeListElement.

 AASd-114 New Constraint AASd-114: If two first level child elements in a

SubmodelElementList have a semanticId then they shall be identical.

 AASd-115 New Constraint AASd-115: If a first level child element in a

SubmodelElementList does not specify a semanticId then the value is

ANNEX | 211

Nc V3.0RC02

vs.

V3.0RC01

New, Update,

Removed,

Reformulated

Comment

assumed to be identical to

SubmodelElementList/semanticIdListElement.

 AASd-116 New Constraint AASd-116: “globalAssetId” (case-insensitive) is a reserved

key. If used as value for SpecificAssetId/name

IdentifierKeyValuePair/value shall be identical to

AssetInformation/globalAssetId.

 AASd-117 New Needed because Referable/idShort now optional

Constraint AASd-117: idShort of non-identifiable Referables not equal to

SubmodelElementList shall be specified (i.e. idShort is mandatory for all

Referables except for SubmodelElementLists and all Identifiables).

 AASd-118 New Constraint AASd-118: If there is a supplemental semantic ID

(HasSemantics/supplementalSemanticId) defined then there shall be

also a main semantic ID (HasSemantics/semanticId).

 AASd-119 New New Qualifier/kind attribute

Constraint AASd-119: If any Qualifier/kind value of a Qualifiable/qualifier

is equal to TemplateQualifier and the qualified element inherits from

“hasKind” then the qualified element shall be of kind Template

(HasKind/kind = "Template").

 AASd-120 New For new submodel element SubmodelElementList

Constraint AASD-120: idShort of submodel elements within a

SubmodelElementList shall not be specified.

 AASd-121 New Constraint AASd-121: For References the type of the first key of

Reference/keys shall be one of GloballyIdentifiables.

 AASd-122 New Constraint AASd-122: For global references, i.e. References with

Reference/type = GlobalReference, the type of the first key of

Reference/keys shall be one of GenericGloballyIdentifiables.

 AASd-123 New Constraint AASd-123: For model references, i.e. References with

Reference/type = ModelReference, the type of the first key of

Reference/keys shall be one of AasIdentifiables.

 AASd-124 New Constraint AASd-124: For global references, i.e. References with

Reference/type = GlobalReference, the last key of Reference/keys shall

be either one of GenericGloballyIdentifiables or one of

GenericFragmentKeys.

 AASd-125 New Constraint AASd-125: For model references, i.e. References with

Reference/type = ModelReference, with more than one key in

Reference/keys the type of the keys following the first key of

Reference/keys shall be one of FragmentKeys.

 AASd-126 New Constraint AASd-126: For model references, i.e. References with

Reference/type = ModelReference, with more than one key in

Reference/keys the type of the last Key in the reference key chain may

be one of GenericFragmentKeys or no key at all shall have a value out

of GenericFragmentKey.

 AASd-127 New Constraint AASd-127: For model references, i.e. References with

Reference/type = ModelReference, with more than one key in

212 | PART 1

Nc V3.0RC02

vs.

V3.0RC01

New, Update,

Removed,

Reformulated

Comment

Reference/keys a key with type FragmentReference shall be preceeded

by a key with type File or Blob. All other AAS fragments, i.e. type values

out of AasSubmodelElements, do not support fragments.

 AAS-128 New Constraint AASd-128: For model references, i.e. References with

Reference/type = ModelReference, the Key/value of a Key preceeded

by a Key with Key/type=SubmodelElementList is an integer number

denoting the position in the array of the submodel element list.

B. METAMODEL CHANGES V3.0RC02 VS. V3.0RC01 – DATA SPECIFICATION
IEC61360

Table 26 Changes w.r.t. Data Specification IEC61360

nc V3.0RC02 Change w.r.t. V3.0RC01 Comment

 DataSpecification

Stereotype <<Template>> added + does not

inherit from Identifiable any longer because

Data Specification are handled in a different

way

Some attributes are added to

DataSpecification as new attributes like id,

administration and description.

 DataSpecification/category Removed, was inherited before by Identifiable

 DataSpecification/displayName Removed, was inherited before by Identifiable

 DataSpecification/idShort Removed, was inherited before by Identifiable

 DataSpecificationIEC61360/unitId
Type changes from Reference to

GlobalReference

x DataSpecificationIEC61360/value Type changed from ValueDataType to string

 DataSpecificationIEC61360/valueId
Removed, the valueId is identical to the ID of

the concept description

 DataSpecificationContent Stereotype <<Template>> added

x DataTypeIEC61360

Some new values were added: BLOB, FILE,

HTML, IRDI. URL renamed to IRI.

See separate entries for individual changes.

x DataTypeIEC61360/URL Renamed to IRI

 ValueList/valueReferencePairs
Bugfix, was

ValueList/valueReferencePairTypes before

x ValueReferencePair/value Type changed from ValueDataType to string

Table 27 New Elements in Metamodel DataSpecification IEC61360

ANNEX | 213

nc V3.0RC02 Comment

x ValueReferencePair/valueId
Type changed from Reference to

GlobalReference

 DataSpecification/administration Was inherited before by Identifiable

 DataSpecification/id Was inherited before by Identifiable

 DataSpecification/desciption Was inherited before by Identifiable

 DataTypeIEC61360/BLOB New value

 DataTypeIEC61360/FILE New value

 DataTypeIEC61360/HTML New value

 DataTypeIEC61360/IRDI New value

 DataTypeIEC61360/IRI
Converted Iri to CamelCase and renamed to Iri

from URL

Table 28 New, Changed or Removed Constraints Data Specification IEC61360

nc V3.0RC02 New, Update,

Removed,

Reformulated

Comment

 AASc-002 New Updated version of AASd-076, renamed to AASC-002 because

applicable to data specification IEC61360

Constraint AASc-002: Data¬Specification¬IEC61360-

/preferredName shall be provided at least in English

(x) AASc-003 New Constraint AASc-003: For a ConceptDescription with category

VALUE using data specification template IEC61360 (http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

DataSpecificationIEC61360/value shall be set.

(x) AASc-004 New Constraint AASc-004: For a ConceptDescription with category

PROPERTY or VALUE using data specification template IEC61360

(http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

- DataSpecificationIEC61360/dataType is mandatory and shall be

defined.

(x) AASc-005 New Constraint AASc-005: For a ConceptDescription with category

REFERENCE using data specification template IEC61360

(http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

- DataSpecificationIEC61360/dataType is STRING by default.

(x) AASc-006 New Constraint AASc-006: For a ConceptDescription with category

DOCUMENT using data specification template IEC61360

(http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

- DataSpecificationIEC61360/dataType shall be one of the following

values: STRING or URL.

(x) AASc-007 New Constraint AASc-007: For a ConceptDescription with category

QUALIFIER_TYPE using data specification template IEC61360

(http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

214 | PART 1

nc V3.0RC02 New, Update,

Removed,

Reformulated

Comment

- DataSpecificationIEC61360/dataType is mandatory and shall be

defined.

(x) AASc-008 New Constraint AASc-008: For a ConceptDescriptions except for a

ConceptDescription of category VALUE using data specification

template IEC61360 (http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

- DataSpecificationIEC61360/definition is mandatory and shall be

defined at least in English.

(x) AASc-009 New Constraint AASc-009: If DataSpecificationIEC61360/dataType one

of: INTEGER_MEASURE, REAL_MEASURE,

RATIONAL_MEASURE, INTEGER_CURRENCY,

REAL_CURRENCY, then DataSpecificationIEC61360/unit or

DataSpecificationIEC61360/unitId shall be defined.

(x) AASc-010 New Constraint AASc-010: If DataSpecificationIEC61360/value is not

empty then DataSpecificationIEC61360/valueList shall be empty and

vice versa

C. METAMODEL CHANGES V3.0RC02 VS. V3.0RC01 – SECURITY PART

Changes:

- Removed: Deprecated: policy decision point, policy enforcement point and policy information points

are not part of information model but of server infrastructure hosting the Asset Administration Shells

- Removed: Certificate Handling not part of information model but of server infrastructure hosting the

Asset Administration Shells

Table 29 Changes w.r.t. Security

nc V3.0RC02 Change w.r.t. V3.0RC01 Comment

x AccessControlPolicyPoints/policyAdministrationoint Type changed from

PolicyAdministrationPoint to

AccessControl

x AccessControlPolicyPoints/policyDecisionPoint Removed

x AccessControlPolicyPoints/policyEnforcementPoint Removed

x AccessControlPolicyPoints/policyInformationPoint Removed

x AccessPermissionRule Does not inherit from Referable any longer

Does not inherit from Qualifiable any

longer

x BlobCertificate Removed

x Certificate Removed

x Formula Now abstract class, only used in security

part now (not used in Qualifiables any

longer)

x Formula/dependsOn Removed attribute

ANNEX | 215

nc V3.0RC02 Change w.r.t. V3.0RC01 Comment

x PolicyAdministrationPoint Removed

x policyDecisionPoint Removed

x policyEnforcementPoint Removed

x policyInformationPoints Removed

x Security/certificate Removed

x Security/requiredCertificateExtension Removed

Table 30 New Elements in Metamodel Security

nc V3.0RC02 vs. V3.0RC01 Comment

 AccessPermissionRule/constraint Substitute for inherited attributes from

Qualifiable

Table 31 New, Changed or Removed Constraints Security

nc V3.0RC02

vs.

V3.0RC01

New, Update,

Removed,

Reformulated

Comment

 AASs-009 Removed Removed since class PolicyAdministrationPoint was removed

Constraint AASs-009: Either there is an external policy

administration point endpoint defined

(PolicyAdministrationPoint/externalPolicyDecisionPoints=true) or

the AAS has its own access control

 AASs-015 Updated Constraint AASs-015: Every data element in

SubjectAttributes/subjectAttributes shall be part of the submodel

that is referenced within the “selectableSubjectAttributes” attribute

of “AccessControl”.

iv. CHANGES V3.0RC01 VS. V2.0.1

A. METAMODEL CHANGES V3.0RC01 W/O SECURITY PART

Major changes:

• idShort of Submodels etc. do not need to be unique in the context of an AssetAdministrationShell any

longer

• Constraints implicitly contained in text were formalized and numbered

• Revised concept on handling of Asset and assetIdentificationModel (assetInformation)

• ConceptDictionaries not supported any longer

• semanticId not mandatory any longer for SubmodelElement

• More than one bill of material for assetInformation in Asset Administration Shell

• Local attribute in References removed

• Parent attribute in Referables removed

216 | PART 1

Table 32 Changes w.r.t. V2.0 w/o Security

nc V3.0RC01 Change w.r.t. V2.0.1 Comment

 anySimpleTypeDef Type removed, was not used in any class

definition any longer, was mentioned in Text

only.

x AssetAdministrationShell/asset Removed, substituted by

AssetAdministrationShell/assetInformation (but

no reference any longer but an aggregation)

x Asset/assetKind Attribute “assetKind” moved to

AssetAdministrationShell/AssetInformation

x Asset/assetIdentificationModel Attribute “assetIdentificationModel “ Removed,

substituted by AssetInformation

/IdentifierKeyValuePairs

x Asset/billOfMaterial Attribute “billOfMaterial” moved to

AssetAdministrationShell/AssetInformation

x AssetAdministrationShell/conceptDictionaries Removed

 ConceptDescription/isCaseOf Text changed, no global reference requested,

just reference.

x ConceptDictionary Removed

x Entity/asset Removed, substituted by Entity/globalAssetId

and Entity/specificAssetId

x Key/local Local attribute removed.

x Referable/parent Parent attribute removed.

Table 33 New Elements in Metamodel V3.0RC01 w/o Security

nc V3.0RC01 vs. V2.0.1 Comment

x AssetAdministrationShell/assetInformation substitute for AssetAdministrationShell/asset

but no reference any longer but an aggregation

 AssetInformation with attributes/functionality from former class

Asset because not specific to Asset but AAS

 AssetInformation/thumbnail Optional Attribute of new class

AssetInformation that was not available in

Asset class before

x Entity/globalAssetId Substitute for Entity/asset (together with

Entity/specificAssetId)

x Entity/specificAssetId Substitute for Entity/asset (together with

Entity/globalAssetId)

 Extension New class, part of new abstract class

HasExtensions

 HasExtensions New abstract class, inherited by Referable

 IdentifierKeyValuePair New class for

AssetInformation/specificAssetId

 Referable/displayName New optional attribute for all referables

ANNEX | 217

Table 34 New, Changed or Removed Constraints w/o Security

nc V3.0RC01 New, Update,

Removed,

Reformulated

Comment

 AASd-001 Removed Constraint AASd-001: In case of a referable element not being an

identifiable element this id is mandatory and used for referring to the

element in its name space.

For namespace part see AASd-022

x AASd-002 Update reformulated, formula added

idShort of Referables shall only feature letters, digits, underscore ("_");

starting mandatory with a letter. I.e. [a-zA-Z][a-zA-Z0-9_]+

 AASd-010 Reformulated Constraint AASd-010: The property has the category “CONSTANT”.

Reformulated to

Constraint AASd-010: The property referenced in

Permission/permission shall have the category “CONSTANT”.

 AASd-011 Reformulated Constraint AASd-011: The property referenced in

Permission/permission shall be part of the submodel that is referenced

within the “selectablePermissions” attribute of “AccessControl”.

 AASd-012 Reformulated Constraint AASd-012: If both, the MultiLanguageProperty/value and

the MultiLanguageProperty/valueId are present then for each string in

a specific language the meaning must be the same as specified in

MultiLanguageProperty/valueId

 AASd-014 Reformulated Entity was changed

Constraint AASd-014: Either the attribute globalAssetId or

specificAssetId of an Entity must be set if Entity/entityType is set to

“SelfManagedEntity”. They are not existing otherwise.

(x) AASd-020 New Constraint AASd-020: The value of Property/value shall be consistent

to the data type as defined in Property/valueType.

(x) AASd-021 New Constraint AASd-021: Every qualifiable can only have one qualifier

with the same Qualifier/type.

(x) AASd-022 New Splitted part from AASd-001

Constraint AASd-022: idShort of non-identifiable referables shall be

unique in its namespace.

(x) AASd-026 New Constraint AASd-026: If allowDuplicates==false then it is not allowed

that the collection contains several elements with the same semantics

(i.e. the same semanticId).

(x) AASd-050 New Constraint AASd-050: If the DataSpecificationContent

DataSpecificationIEC61360 is used for an element then the value of

hasDataSpecification/dataSpecification shall contain the global

reference to the IRI of the corresponding data specification template

http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0.

(x) AASd-051 New Constraint AASd-051: A ConceptDescription shall have one of the

following categories: VALUE, PROPERTY, REFERENCE,

218 | PART 1

nc V3.0RC01 New, Update,

Removed,

Reformulated

Comment

DOCUMENT, CAPABILITY, RELATIONSHIP, COLLECTION,

FUNCTION, EVENT, ENTITY, APPLICATION_CLASS, QUALIFIER,

VIEW. Default: PROPERTY.

(x) AASd-052a New Constraint AASd-052a: If the semanticId of a Property references a

ConceptDescription then the ConceptDescription/category shall be

one of following values: VALUE, PROPERTY.

(x) AASd-052b New Constraint AASd-052b: If the semanticId of a MultiLanguageProperty

references a ConceptDescription then the

ConceptDescription/category shall be one of following values:

PROPERTY.

(x) AASd-053 New Constraint AASd-053: If the semanticId of a Range submodel element

references a ConceptDescription then the

ConceptDescription/category shall be one of following values:

PROPERTY.

(x) AASd-054 New Constraint AASd-054: If the semanticId of a ReferenceElement

submodel element references a ConceptDescription then the

ConceptDescription/category shall be one of following values:

REFERENCE.

(x) AASd-055 New Constraint AASd-055: If the semanticId of a RelationshipElement or

an AnnotatedRelationshipElement submodel element references a

ConceptDescription then the ConceptDescription/category shall be

one of following values: RELATIONSHIP.

(x) AASd-056 New Constraint AASd-056: If the semanticId of a Entity submodel element

references a ConceptDescription then the

ConceptDescription/category shall be one of following values:

ENTITY. The ConceptDescription describes the elements assigned to

the entity via Entity/statement.

(x) AASd-057 New Constraint AASd-057: The semanticId of a File or Blob submodel

element shall only reference a ConceptDescription with the category

DOCUMENT.

(x) AASd-058 New Constraint AASd-058: The semanticId of a Capability submodel

element shall only reference a ConceptDescription with the category

CAPABILITY.

(x) AASd-059 New Constraint AASd-059: The semanticId of a

SubmodelElementCollection submodel element shall only reference a

ConceptDescription with the category COLLECTION or ENTITY.

(x) AASd-060 New Constraint AASd-060: If the semanticId of a Operation submodel

element references a ConceptDescription then the category of the

ConceptDescription shall be one of the following values: FUNCTION.

(x) AASd-061 New Constraint AASd-061: If the semanticId of a Event submodel element

references a ConceptDescription then the category of the

ConceptDescription shall be one of the following values: EVENT.

(x) AASd-062 New Constraint AASd-062: If the semanticId of a Property references a

ConceptDescription then the ConceptDescription/category shall be

one of following values: APPLICATION_CLASS.

ANNEX | 219

nc V3.0RC01 New, Update,

Removed,

Reformulated

Comment

(x) AASd-063 New Constraint AASd-063: If the semanticId of a Qualifier references a

ConceptDescription then the ConceptDescription/category shall be

one of following values: QUALIFIER.

(x) AASd-064 New Constraint AASd-064: If the semanticId of a View references a

ConceptDescription then the category of the ConceptDescription shall

be VIEW.

(x) AASd-065 New Constraint AASd-065: If the semanticId of a Property or

MultiLanguageProperty references a ConceptDescription with the

category VALUE then the value of the property is identical to

DataSpecificationIEC61360/value and the valueId of the property is

identical to DataSpecificationIEC61360/valueId.

(x) AASd-066 New Constraint AASd-066: If the semanticId of a Property or

MultiLanguageProperty references a ConceptDescription with the

category PROPERTY and DataSpecificationIEC61360/valueList is

defined the value and valueId of the property is identical to one of the

value reference pair types references in the value list, i.e.

ValueReferencePair/value or ValueReferencePair/valueId, resp.

(x) AASd-067 New Constraint AASd-067: If the semanticId of a MultiLanguageProperty

references a ConceptDescription then

DataSpecificationIEC61360/dataType shall be

STRING_TRANSLATABLE.

(x) AASd-068 New Constraint AASd-068: If the semanticId of a Range submodel element

references a ConceptDescription then

DataSpecificationIEC61360/dataType shall be a numerical one, i.e.

REAL_* or RATIONAL_*.

(x) AASd-069 New Constraint AASd-069: If the semanticId of a Range references a

ConceptDescription then DataSpecificationIEC61360/levelType shall

be identical to the set {Min, Max}.

(x) AASd-070 New Constraint AASd-070: For a ConceptDescription with category

PROPERTY or VALUE using data specification template IEC61360

(http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

- DataSpecificationIEC61360/dataType is mandatory and shall be

defined.

(x) AASd-071 New Constraint AASd-071: For a ConceptDescription with category

REFERENCE using data specification template IEC61360

(http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

- DataSpecificationIEC61360/dataType is STRING by default.

(x) AASd-072 New Constraint AASd-072: For a ConceptDescription with category

DOCUMENT using data specification template IEC61360

(http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

- DataSpecificationIEC61360/dataType shall be one of the following

values: STRING or URL.

(x) AASd-073 New Constraint AASd-073: For a ConceptDescription with category

QUALIFIER using data specification template IEC61360 (http://admin-

220 | PART 1

nc V3.0RC01 New, Update,

Removed,

Reformulated

Comment

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

- DataSpecificationIEC61360/dataType is mandatory and shall be

defined.

(x) AASd-074 New Constraint AASd-074: For all ConceptDescriptions except for

ConceptDescriptions of category VALUE using data specification

template IEC61360 (http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

- DataSpecificationIEC61360/definition is mandatory and shall be

defined at least in English.

(x) AASd-075 New Constraint AASd-075: For all ConceptDescriptions using data

specification template IEC61360 (http://admin-

shell.io/DataSpecificationTemplates/DataSpecificationIEC61360/2/0)

values for the attributes not being marked as mandatory or optional in

tables Table 6, Table 7, Table 8 and Table 9.depending on its category

are ignored and handled as undefined.

 AASd-077 New Constraint AASd-077: The name of an extension within

HasExtensions needs to be unique.

(x) AASd-080 New Constraint AASd-080: In case Key/type == GlobalReference idType

shall not be any LocalKeyType (IdShort, FragmentId).

 AASd-081 New Constraint AASd-081: In case Key/type==AssetAdministrationShell

Key/idType shall not be any LocalKeyType (IdShort, FragmentId).

(x) AASd-092 New Constraint AASd-092: If the semanticId of a

SubmodelElementCollection with

SubmodelElementCollection/allowDuplicates == false references a

ConceptDescription then the ConceptDescription/category shall be

ENTITY.

(x) AASd-093 New Constraint AASd-093: If the semanticId of a

SubmodelElementCollection with

SubmodelElementCollection/allowDuplicates == true references a

ConceptDescription then the ConceptDescription/category shall be

COLLECTION.

 AASd-100 New Constraint AASd-100: An attribute with data type "string" is not allowed

to be empty.

B. METAMODEL CHANGES V3.0RC01 – SECURITY PART

Table 35 Changes Metamodel w.r.t. Security

nc V3.0RC01 w.r.t. V2.0.1 Change Comment

Table 36 New Elements in Metamodel Security

nc V3.0RC01 vs. V2.0.1 New Elements w.r.t

V2.0.1

Comment

ANNEX | 221

Table 37 New, Changed or Removed Constraints Security

nc V3.0RC01 New, Update,

Removed,

Reformulated

Comment

 AASd-010 Removed Renamed to AASs-010 (see NEW)

 AASs-010 NEW Reformulation of AASd-010

Constraint AASs-010: The property referenced in

Permission/permission shall have the category

“CONSTANT”.

 AASd-011 Removed Renamed to AASs-011 (see NEW)

 AASs-011 NEW Reformulation of AASd-011

Constraint AASs-011: The property referenced in

Permission/permission shall be part of the submodel

that is referenced within the “selectablePermissions”

attribute of “AccessControl”.

 AASd-015 Removed Renamed to AASs-015 (see NEW)

 AASs-015 NEW Constraint AASd-015: The data element

SubjectAttributes/subjectAttribute shall be part of the

submodel that is referenced within the

“selectableSubjectAttributes” attribute of

“AccessControl”.

v. CHANGES V2.0.1 VS. V2.0

A. METAMODEL CHANGES V2.0.1 W/O SECURITY PART

Major changes:

- Only bugfixes

Table 38 Changes w.r.t. V2.0.1 w/o Security

nc V2.0.1 Change w.r.t. V2.0 Comment

 DataTypeIEC61360/INTEGER_COUNT Bugfix, was missing

 DataTypeIEC61360/INTEGER_MEASURE Bugfix, was missing

 DataTypeIEC61360/INTEGER_CURRENCY Bugfix, was missing

 hasDataSpecification Bugfix, ist abstract class

Table 39 New Elements in Metamodel V2.0.1 w/o Security

V2.0.1 w.r.t. V2.0 New Elements Comment

222 | PART 1

Table 40 New, Changed or Removed Constraints w/o Security

nc V2.0.1 New, Update,

Removed

Comment

 AASd-013 Removed Constraint AASd-013: Min and Max of a Property Range can

be empty, denoting a range with open upper and lower

boundary

B. METAMODEL CHANGES V2.0.1 – SECURITY PART

Table 41 Changes Metamodel w.r.t. V2.0 Security

nc V2.1 Change w.r.t. V2.0 Comment

Table 42 New Elements in Metamodel V2.1 w.r.t. V2.0 Security

V2.1 Comment

Table 43 New, Changed or Removed Constraints w/o Security

nc V2.0.1 w.r.t.

V2.0

New, Update, Removed Comment

 AASd-001 update idShort now mandatory

Constraint AASd-001: an identifiable element this id is
mandatory and used for referring to the element in its
name space.
➔
Constraint AASd-001: In case of a referable element
not being an identifiable element this ID is used for
referring to the element in its name space.

 AASd-013 removed Constraint AASd-013: In case of a range with
kind=Instance either the min or the max value or both
need to be defined.

vi. CHANGES V2.0 VS. V1.0

A. METAMODEL CHANGES V2.0 W/O SECURITY PART

Major changes:

• Composite I4.0 Components supported via new Entity submodel element and billOfMaterial

• Event submodel element introduced

• Capability submodel element introduced

• Annotatable relationship submodel element introduced

• MultiLanguageProperty submodel element introduced

• Range submodel element introduced

• Data Specification Template IEC61360 extended for Values, ValueLists and Ranges

• Also referencing of fragments within a file etc. now supported

ANNEX | 223

Table 44 Changes w.r.t. V1.0 w/o Security

nc V2.0 Change w.r.t. V1.0 Comment

(x) 55 anySimpleTypeDef Type starts now with capital letter:

AnySimpleTypeDef

Type changed from string to values

representing xsd-type anySimpleType

 Asset Does not inherit from HasKind any longer (but

attribute kind remains)

 Asset/kind Now of type “AssetKind” instead of “Kind”.

Instead of value Type and Instance now value

Template and Instance

 AssetAdministrationShell/security Now optional to support passive AAS of type 1

 Code Data type removed, not used any longer

x DataSpecificationIEC61360/shortName Type changed from string to LangStringSet

Cardinality changed from mandatory to

optional

x DataSpecificationIEC61360/sourceOfDefinition Type changed from langString to string

(x)56 DataSpecificationIEC61360/dataType Type changed from string to Enumeration

Cardinality changed from mandatory to

optional

x DataSpecificationIEC61360/code Attribute code removed

 DataSpecificationIEC61360/definition Cardinality changed from mandatory to

optional

 HasDataSpecification Was abstract before

 HasDataSpecification/hasDataSpecification Renamed to

HasDataSpecification/dataSpecification

x HasKind/kind Now of type “ModelingKind” instead of “Kind”.

Values changed: Type now Template; Instance

remains

x File/value File name not without but with extension

x Identifiable/description Type changed from langString to

LangStringSet

x IdentifierType/URI URI renamed to IRI

 Kind Type Kind removed and substituted by types

AssetKind and ModelingKind

x OperationVariable Does not inherit from SubmodelElement any

longer

55 Implicitly there was a constraint restricting the values to the values in the enumeration. This is now

formalized.

56 Implicitly there was the constraint that only IEC61360 data types are allowed to be used. This is now

formalized.

224 | PART 1

nc V2.0 Change w.r.t. V1.0 Comment

 Property/value Type changed from anySimpleTypeDef to

ValueDataType

x Qualifier/qualifierType Renamed to Qualifier/type

x Qualifier/qualifierValue Renamed to Qualifier/value

Type changed from AnySimpleTypeDef to

ValueDataType

x Qualifier/qualifierValueId Renamed to Qualifier/valueId

x Referable/idShort Now mandatory, was optional (but with

constraints for defined elements)

x Reference/key Cardinality changed from 0..* to 1..*

Table 45 New Elements in Metamodel V1.0 w/o Security

V2.0 Comment

AnnotatedRelationshipElement New submodel element, inheriting from RelationshipElement

Asset/billOfMaterial New attribute

AssetKind New enumeration type

BasicEvent New submodel element, inherits from Event

Capability New submodel element

DataSpecificationIEC61360/valueList For value lists (string)

DataSpecificationIEC61360/value For coded and explicit values

DataSpecificationIEC61360/valueId For coded values

DataSpecificationIEC61360/levelType For Ranges

DataSpecificationPhysicalUnit New data specification template

DataTypeIEC61360 New enumeration type

Entity New submodel Element

EntityType New enumeration type

IdentifierType Is a subset of KeyType Enumeration

KeyElements/FragmentReference New value FragmentReference as part of KeyElements

Enumeration

LocalKeyType Is a subset of KeyType Enumeration

LocalKeyType/FragmentId New value for KeyType Enumeration (via subset

LocalKeyType)

LangStringSet New type, used for example in MultiLanguageProperty

LevelType New enumeration type

ModelingKind New enumeration type

MultiLanguageProperty New submodel element

Qualifier/valueType New attribute to be consistent with valueType of Property

etc.

ANNEX | 225

V2.0 Comment

Range New submodel element

ReferableElements/BasicEvent New enumeration value

ReferableElements/Capability New enumeration value

ReferableElements/Event New enumeration value

ReferableElements/MultiLanguageProperty New enumeration value

ReferableElements/Range New enumeration value

ValueDataType New type, used for example for Property value

ValueList New class

ValueReferencePairType New class

Table 46 New, Changed or Removed Constraints w/o Security

nc V2.0 New, Update,

Removed

Comment

 AASd-007 update Reformulated

Constraint AASd-007: if both, the
value and the valueId are present then
the value needs to be identical to the
value of the referenced coded value
in valueId.

 AASd-008 update Reformulated

Constraint AASd-008: The submodel
element value of an operation variable
shall be of kind=Template.

 AASd-025 removed Redundant to AASd-015

Constraint AASd-025: The data element shall be part of the
submodel that is referenced within the
“selectableSubjectAttributes” attribute of “AccessControl”.

226 | PART 1

B. METAMODEL CHANGES V2.0 – SECURITY PART

Table 47 Changes Metamodel w.r.t. V1.0 Security

nc V2.0 Change w.r.t. V1.0 Comment

x AccessControl/selectableEnvironmentAttributes Type changed from Submodel to Submodel*

 AccessPermissionRule/permissionsPerObject Cardinality now consistent for figure and table: 0..*

x AccessPermissionRule/targetSubjectAttributes Cardinality changed from 1..* to 1

 Certificate Was abstract, now not abstract and contains

attributes (see in table New)

x PermissionKind/allow Now PermissionKind/Allow start with capital letter

for enumeration values

x PermissionKind/deny Now PermissionKind/Deny start with capital letter

for enumeration values

x PermissionKind/not applicable Now PermissionKind/NotApplicable start with

capital letter for enumeration values

x PermissionKind/Undefined Now PermissionKind/Undefined start with capital

letter for enumeration values

 PermissionsPerObject Name now consistent for figure and table (in table

PermissionPerObject, needs to be

PermissionsPerObject)

x PolicyAdministrationPoint/externalAccessControl Type changed from Endpoint to Boolean,

cardinality 1

x PolicyInformationPoints/externalInformationPoint Type changed from Endpoint to Boolean,

cardinality 1

externalInformationPoint renamed to

externalInformationPoints

x Security/trustAnchor Renamed to Security/certificate

Table 48 New Elements in Metamodel w.r.t. Security

V2.0 Comment

BlobCertificate New class inheriting from Certificate

Certificate Abstract class: was foreseen in V1.0 but not yet

modelled

Security/requiredCertificateExtension New attribute

PolicyEnforcementPoint Was foreseen in V1.0 but not yet modelled

PolicyEnforcementPoint/externalPolicyEnforcementPoint

PolicyDecisionPoint Was foreseen in V1.0 but not yet modelled

PolicyDecisionPoint/externalPolicyDecisionPoint

ANNEX | 227

Table 49 New, Changed or Removed Constraints w/o Security

nc V2.0 New, Update,

Removed

Comment

228 | PART 1

ANNEX G. BIBLIOGRAPHY
[1] “Recommendations for implementing the strategic initiative INDUSTRIE 4.0”, acatech, April 2013.

[Online]. Available: https://www.acatech.de/Publikation/recommendations-for-implementing-the-strategic-

initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/

[2] “Implementation Strategy Industrie 4.0: Report on the results of the Industrie 4.0 Platform”;

BITKOM e.V. / VDMA e.V., /ZVEI e.V., April 2015. [Online]. Available:

https://www.bitkom.org/noindex/Publikationen/2016/Sonstiges/Implementation-Strategy-Industrie-40/2016-

01-Implementation-Strategy-Industrie40.pdf

[3] DIN SPEC 91345:2016-04 “Referenzarchitekturmodell Industrie 4.0 (RAMI4.0) / Reference

Architecture Model Industrie 4.0 (RAMI4.0) / Modèle de reference de l’architecture de l’industrie 4.0

(RAMI4.0)”, ICS 03.100.01; 25.040.01; 35.240.50, April 2016. [Online]. Available:

https://www.beuth.de/en/technical-rule/din-spec-91345-en/250940128

[4] “Structure of the Administration Shell, continuation of the development of the reference model for

the Industrie 4.0 component", Plattform Industrie 4.0, Working Paper, April 2016. [Online]. Available:

https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-

shell.html

[5] “Which criteria do Industrie 4.0 products need to fulfil? Guideline 2020”, Federal Ministry for

Economic Affairs and Energy (BMWi), July 2020. [Online]. Available: https://www.plattform-

i40.de/PI40/Redaktion/EN/Downloads/Publikation/criteria-industrie-40-products_2020.html

[6] “Beispiele zur Verwaltungsschale der Industrie 4.0-Komponente – Basisteil (German)”; ZVEI e.V.,

Whitepaper, November 2016. [Online]. Available: https://www.zvei.org/presse-

medien/publikationen/beispiele-zur-verwaltungsschale-der-industrie-40-komponente-basisteil/

[7] “Aspects of the research roadmap in application scenarios”, Plattform Industrie 4.0, working paper,

April 2016. [Online]. Available: http://www.plattform-

i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html

[8] “Fortschreibung der Anwendungsszenarien der Plattform Industrie 4.0 (German)”; Plattform Industrie

4.0, Ergebnispapier, October 2016. [Online]. Available: https://www.plattform-

i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html

[9] “Security in RAMI4.0”, Plattform Industrie 4.0, Berlin, technical overview, April 2016. [Online].

Available: http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/security-rami40-en.html

[10] “Die Deutsche Normungs-Roadmap Industrie 4.0 / The German standardization roadmap Industrie

4.0“, DKE Deutsche Kommission Elektrotechnik, Elektronik Informationstechnik im DIN und VDE, Version

2.0, 2015. [Online]. Available: http://www.din.de/de/forschung-und-innovation/industrie4-0/roadmap-

industrie40-62178

[10a] “Weiterentwicklung des Interaktionsmodells für Industrie 4.0-Komponenten“, Plattform Industrie

4.0, discussion paper, November 2016. [Online]. Available: https://www.plattform-

i40.de/I40/Redaktion/DE/Downloads/Publikation/interaktionsmodell-i40-komponenten-it-gipfel.html

[11] “Definition of terms relating to Industrie 4.0”, Fraunhofer IOSB and VDI/VDE-GMA Fachausschuss

7.21. Accessed: 2020-11-14. [Online]. Available:

http://i40.iosb.fraunhofer.de/_search?patterns=FA7.21%20Begriffe

[12] “Relationships between I4.0 Components – Composite Components and Smart Production”,

Plattform Industrie 4.0, Berlin, working paper, June 2017. [Online]. Available: https://www.plattform-

i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-2018-relationship.html

[13] “Industrie 4.0 Plug-and-Produce for Adaptable Factories”; Plattform Industrie 4.0, Berlin, working

paper, June 2017. [Online]. Available: http://www.plattform-

i40.de/I40/Redaktion/DE/Downloads/Publikation/Industrie-40-%20Plug-and-Produce.html

https://www.acatech.de/Publikation/recommendations-for-implementing-the-strategic-initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/
https://www.acatech.de/Publikation/recommendations-for-implementing-the-strategic-initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/
https://www.bitkom.org/noindex/Publikationen/2016/Sonstiges/Implementation-Strategy-Industrie-40/2016-01-Implementation-Strategy-Industrie40.pdf
https://www.bitkom.org/noindex/Publikationen/2016/Sonstiges/Implementation-Strategy-Industrie-40/2016-01-Implementation-Strategy-Industrie40.pdf
https://www.beuth.de/en/technical-rule/din-spec-91345-en/250940128
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/structure-of-the-administration-shell.html
https://www.zvei.org/presse-medien/publikationen/beispiele-zur-verwaltungsschale-der-industrie-40-komponente-basisteil/
https://www.zvei.org/presse-medien/publikationen/beispiele-zur-verwaltungsschale-der-industrie-40-komponente-basisteil/
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/aspects-of-the-research-roadmap.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/fortschreibung-anwendungsszenarien.html
http://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/security-rami40-en.html
http://www.din.de/de/forschung-und-innovation/industrie4-0/roadmap-industrie40-62178
http://www.din.de/de/forschung-und-innovation/industrie4-0/roadmap-industrie40-62178
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/interaktionsmodell-i40-komponenten-it-gipfel.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/interaktionsmodell-i40-komponenten-it-gipfel.html
file:///C:/Users/Torben/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/V9OOP350/%20http/i40.iosb.fraunhofer.de/_search%3fpatterns=FA7.21%20Begriffe
file:///C:/Users/Torben/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/V9OOP350/%20http/i40.iosb.fraunhofer.de/_search%3fpatterns=FA7.21%20Begriffe
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-2018-relationship.html
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-2018-relationship.html
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/Industrie-40-%20Plug-and-Produce.html
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/Industrie-40-%20Plug-and-Produce.html

ANNEX | 229

[14] “Security der Verwaltungsschale / Security of the Administration Shell”, Plattform Industrie 4.0,

Berlin, working paper, April 2017. [Online]. Available: http://www.plattform-

i40.de/I40/Redaktion/DE/Downloads/Publikation/security-der-verwaltungsschale.html

[15] DIN SPEC 92000:2019-09 “Data Exchange on the Base of Property Value Statements (PVSX)”,

2019 September.

[16] “Verwaltungsschale in der Praxis. Wie definiere ich Teilmodelle, beispielhafte Teilmodelle und

Interaktion zwischen Verwaltungsschalen (in German)”, Version 1.0, April 2019, Plattform Industrie 4.0 in

Kooperation mit VDI/VDE-GMA Fachausschuss 7.20, Federal Ministry for Economic Affairs and Energy

(BMWi), Available: https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/2019-

verwaltungsschale-in-der-praxis.html

[17] “I4.0-Sprache. Vokabular, Nachrichtenstruktur und semantische Interaktionsprotokolle der I4.0-

Sprache (German)”, Plattform Industrie 4.0 in Kooperation mit VDI/VDE-GMA Fachausschuss 7.20, April

2018. [Online]. Available: https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/hm-2018-

sprache.html

[18] “The Structure of the Administration Shell: TRILATERAL PERSPECTIVES from France, Italy and

Germany”, March 2018, [Online]. Available: https://www.plattform-

i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-coop.html

[19] „Access control for Industrie 4.0 components for application by manufacturers, operators and

integrators“, Plattform Industrie 4.0, Discussion Paper, Sept. 2019 (German Version Nov. 2018), [Online].

Available: https://www.plattform-

i40.de/PI40/Redaktion/EN/Downloads/Publikation/Access%20control%20for%20Industrie%204.0%20compo

nents.html

[20] “Industrial automation systems and integration — Exchange of characteristic data — Part 10:

Characteristic data exchange format”, Technical Specification ISO/TS 29002-10:2009(E), 2009

[21] “Reference Architecture Model for the Industrial Data Space”, Fraunhofer in cooperation with

Industrial Data Space Association, 2017. [Online]. Available:

https://www.fit.fraunhofer.de/content/dam/fit/en/documents/Industrial-Data-Space_Reference-Architecture-

Model-2017.pdf

[22] Vincent Hu, David Ferraiolo, Rick Kuhn, Adam Schnitzer, Kenneth Sandlin, Robert Miller and

Karen Scarfone, “Guide to Attribute Based Access Control (ABAC) Definition and Considerations”, NIST

Special Publication 800-162, Jan. 2014. [Online]. Available: http://dx.doi.org/10.6028/NIST.SP.800-162

[23] “Smart Manufacturing - Reference Architecture Model Industry 4.0 (RAMI4.0)”, IEC PAS 63088,

International Electrotechnical Commission (IEC), 2017

[24] “Sustainability of Digital Formats: Planning for Library of Congress Collections. Open Packaging

Conventions (Office Open XML)”, ISO 29500-2:2008-2012, 2012. [Online]. Available:

https://www.loc.gov/preservation/digital/formats/fdd/fdd000363.shtml

[25] “Standardization of Office Open XML”, Wikipedia. Accessed: 2019-01-26 [Online]. Available:

https://en.wikipedia.org/wiki/Standardization_of_Office_Open_XML

[26] “OpenDocument standardization”, Wikipedia. Accessed: 2019-01-26 [Online]. Available:

https://en.wikipedia.org/wiki/OpenDocument_standardization

[27] “The Digital Signing Framework of the Open Packaging Conventions”. Accessed: 2019-01-26.

[Online]. Available: https://msdn.microsoft.com/en-us/library/aa905326.aspx

[28] “Open Packaging Conventions Fundamentals”. Accessed: 2019-01-26 [Online]. Available:

https://msdn.microsoft.com/en-us/library/windows/desktop/dd742818(v=vs.85).aspx

[29] “What is a digital signature? Fundamental principles”. Accessed: 2019-01-26. [Online]. Available:

http://securityaffairs.co/wordpress/5223/digital-id/what-is-a-digital-signature-fundamental-principles.html

http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/security-der-verwaltungsschale.html
http://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/security-der-verwaltungsschale.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/2019-verwaltungsschale-in-der-praxis.html
https://www.plattform-i40.de/PI40/Redaktion/DE/Downloads/Publikation/2019-verwaltungsschale-in-der-praxis.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/hm-2018-sprache.html
https://www.plattform-i40.de/I40/Redaktion/DE/Downloads/Publikation/hm-2018-sprache.html
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-coop.html
https://www.plattform-i40.de/I40/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-coop.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Access%20control%20for%20Industrie%204.0%20components.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Access%20control%20for%20Industrie%204.0%20components.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Access%20control%20for%20Industrie%204.0%20components.html
https://www.fit.fraunhofer.de/content/dam/fit/en/documents/Industrial-Data-Space_Reference-Architecture-Model-2017.pdf
https://www.fit.fraunhofer.de/content/dam/fit/en/documents/Industrial-Data-Space_Reference-Architecture-Model-2017.pdf
http://dx.doi.org/10.6028/NIST.SP.800-162
https://www.loc.gov/preservation/digital/formats/fdd/fdd000363.shtml
https://en.wikipedia.org/wiki/Standardization_of_Office_Open_XML
https://en.wikipedia.org/wiki/OpenDocument_standardization
https://msdn.microsoft.com/en-us/library/aa905326.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd742818(v=vs.85).aspx
http://securityaffairs.co/wordpress/5223/digital-id/what-is-a-digital-signature-fundamental-principles.html

230 | PART 1

[30] “Sustainability of Digital Formats: Planning for Library of Congress Collections. Document

Container File: Core (based on ZIP 6.3.3)”. Accessed: 2019-01-26. [Online]. Available:

https://www.loc.gov/preservation/digital/formats/fdd/fdd000361.shtml

[31] “System.IO.Packaging Namespace”, MSDN, Accessed: 2019-01-26 [Online]. Available:

https://msdn.microsoft.com/en-us/library/system.io.packaging(v=vs.110).aspx

[32] DIN SPEC 16593-1 “Reference Model for Industrie 4.0 Service Architectures – Part 1: Basic

Concepts of an Interaction-based Architecture”, Beuth-Verlag: Berlin, Germany, 2018. [Online]. Available:

https://www.beuth.de/en/technical-rule/din-spec-16593-1/287632675

[33] ISO 13854-42 “Standard data element types with associated classification scheme – Part 1:

Definitions – Principles and methods” Edition 4.0, 2017-07

[34] IEC 61360-1 “Standard data element types with associated classification scheme – Part 1:

Definitions – Principles and methods”, Edition 4.0, 2017-07

[35] ISO/TS 29002-10:2009(E) “Industrial automation systems and integration — Exchange of

characteristic data — Part 10: Characteristic data exchange format”, First edition 2009-12-01

[36] A. Bayha, J. Bock, B. Boss, C. Diedrich, S. Malakuti “Describing Capabilities of Industrie 4.0

Components”. Nov. 2020. Plattform Industrie 4.0. [Online] Available: https://www.plattform-

i40.de/PI40/Redaktion/EN/Downloads/Publikation/Capabilities_Industrie40_Components.html

[37] AutomationML Association: “Application Recommendations: Asset Administration Shell

Representation (AR 004E)“, Version 1.0.0, 20.11.2019, [Online]. Available:

https://www.automationml.org/o.red.c/dateien.html

[38] H. Knublauch, D. Knotokostas “Shapes Constraint Language (SHACL)“ W3C Recommendation,

2017, [Online]. Available: https://www.w3.org/TR/shacl/

[39] “I4AAS – Industrie 4.09 Asset Administration Shell”. June 2021. [Online] Available:

https://opcfoundation.org/markets-collaboration/I4AAS/

[40] “AASX Package Explorer. Software” Download: https://github.com/admin-shell-io/aasx-package-

explorer

[41] “AAS Repository. Repository for Information and Code for the Asset Administration Shell”.

https://github.com/admin-shell-io

[42] “Eclipse BaSyx”. [Online]. Available: https://www.eclipse.org/basyx/

[43] DIN SPEC 91406:2019 “Automatische Identifikation von physischen Objekten und Informationen

zum physischen Objekt in IT-Systemen, insbesondere IoT-Systemen/Automatic identification of physical

objects and information on physical objects in IT systems, particularly IoT systems”. December 2019

[44] F. Manola, E. Miller “RDF 1.1 Primer“ W3C Recommendation, 2014, [Online]. Available:

https://www.w3.org/TR/rdf11-primer/

[45] T. R. Gruber "A translation approach to portable ontology specifications." Knowledge acquisition

5.2 (1993): 199-220. [Online]. Available: https://tomgruber.org/writing/ontolingua-kaj-1993.htm

[46] “The Industrial Internet of Things Vocabulary”. Technical Report. Version 2.3. October 10, 2020.

Industrial Internet Consortium. IIC:IIVOC:V2.3:20201025 [Online] Available:

https://www.iiconsortium.org/vocab/

[47] “OMG Unified Modeling Language (OMG UML)”. Formal/2017-12-05. Version 2.5.1. December

2018. [Online] Available: https/www.omg.org/spec/UML/

[48] T. Preston-Werner “Semantic Versioning”. Version 2.0.0. Accessed: 2020-11-13. [Online]

Available: https://semver.org/spec/v2.0.0.html

[49] “Details of the Asset Administration Shell – Interoperability at Runtime – Exchanging Information

via Application Programming Interfaces”. Version 1.0RC01. November 2020. Plattform Industrie 4.0 [Online]

Available: https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Details-of-the-Asset-

Administration-Shell-Part2/1/0.html

https://www.loc.gov/preservation/digital/formats/fdd/fdd000361.shtml
https://msdn.microsoft.com/en-us/library/system.io.packaging(v=vs.110).aspx
https://www.beuth.de/en/technical-rule/din-spec-16593-1/287632675
https://www.automationml.org/o.red.c/dateien.html
https://www.w3.org/TR/shacl/
https://opcfoundation.org/markets-collaboration/I4AAS/
https://github.com/admin-shell-io/aasx-package-explorer
https://github.com/admin-shell-io/aasx-package-explorer
https://github.com/admin-shell-io
https://www.eclipse.org/basyx/
https://www.w3.org/TR/rdf11-primer/
https://tomgruber.org/writing/ontolingua-kaj-1993.htm
https://www.iiconsortium.org/vocab/
file:///C:/Users/Torben/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/V9OOP350/https/www.omg.org/spec/UML/
https://semver.org/spec/v2.0.0.html
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.plattform-i40.de%2FPI40%2FRedaktion%2FEN%2FDownloads%2FPublikation%2FDetails-of-the-Asset-Administration-Shell-Part2%2F1%2F0.html&data=04%7C01%7CBirgit.Boss%40de.bosch.com%7C9fe86029fd024caea95208d88590548f%7C0ae51e1907c84e4bbb6d648ee58410f4%7C0%7C0%7C637406202234383131%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=r5TVmLvOWKRqMCBEtS4AMMM3TJZOTONYC8nlJjTz3rw%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.plattform-i40.de%2FPI40%2FRedaktion%2FEN%2FDownloads%2FPublikation%2FDetails-of-the-Asset-Administration-Shell-Part2%2F1%2F0.html&data=04%7C01%7CBirgit.Boss%40de.bosch.com%7C9fe86029fd024caea95208d88590548f%7C0ae51e1907c84e4bbb6d648ee58410f4%7C0%7C0%7C637406202234383131%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=r5TVmLvOWKRqMCBEtS4AMMM3TJZOTONYC8nlJjTz3rw%3D&reserved=0

ANNEX | 231

[50] “Asset Administration Shell. Reading Guide”. Plattform Industrie 4.0 in cooperation with IDTA.

November 2020. [Online] Available: https://industrialdigitaltwin.org/wp-content/uploads/2022/02/AAS-

ReadingGuide_202201.pdf

[51] “Submodel Templates of the Asset Administration Shell - Generic Frame for Technical Data for

Industrial Equipmentin Manufacturing”, Version 1.1, Nov. 2020, Plattform Industrie 4.0 [Online] Available:

https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Submodel_templates-

Asset_Administration_Shell-Technical_Data.html

[52] “Submodel Templates of the Asset Administration Shell - ZVEI Digital Nameplate for industrial

equipment”, Version 1.0, Nov. 2020, Plattform Industrie 4.0 [Online] Available: https://www.plattform-

i40.de/PI40/Redaktion/EN/Downloads/Publikation/Submodel_templates-Asset_Administration_Shell-

digital_nameplate.html

[53] “Secure Download Service”, Discussion Paper. Oct. 2020, Plattform Industrie 4.0 [Online]

Available: https://www.plattform-

i40.de/PI40/Redaktion/EN/Downloads/Publikation/secure_downloadservice.html

[54] “eXtensible Access Control Markup Language (XACML)”, OASIS Standard, Version 3.0, 22. Jan.

2013, [Online]. Available: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf

[55] Top Level Project “Eclipse Digital Twin” Available: https://projects.eclipse.org/projects/dt

[56] OPC 30270: OPC UA for Asset Administrastion Shell (AAS). 2021-06-04. [Online]. Available:

https://reference.opcfoundation.org/v104/I4AAS/v100/docs/

[57] OPC Unified Architecture Specification. Part 5 Information Model. [Online]. Available:

https://opcfoundation.org/developer-tools/specifications-unified-architecture

[58] OPC UA Information Models. [Online]. Available: https://opcfoundation.org/developer-

tools/specifications-opc-ua-information-models

[59] IEC 63278-1 “Asset Administration Shell for industrial applications – Part 1: Asset Administration

Shell structure”. 95/925/CDV

[60] “Registered AAS Submodel Templates”. Industrial Digital Twin Association. Available:

https://industrialdigitaltwin.org/en/content-hub/submodels

https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Submodel_templates-Asset_Administration_Shell-Technical_Data.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Submodel_templates-Asset_Administration_Shell-Technical_Data.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Submodel_templates-Asset_Administration_Shell-digital_nameplate.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Submodel_templates-Asset_Administration_Shell-digital_nameplate.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Submodel_templates-Asset_Administration_Shell-digital_nameplate.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/secure_downloadservice.html
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/secure_downloadservice.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf
https://projects.eclipse.org/projects/dt
https://reference.opcfoundation.org/v104/I4AAS/v100/docs/
https://opcfoundation.org/developer-tools/specifications-unified-architecture
https://opcfoundation.org/developer-tools/specifications-opc-ua-information-models
https://opcfoundation.org/developer-tools/specifications-opc-ua-information-models
https://industrialdigitaltwin.org/en/content-hub/submodels

232 | PART 1

AUTHORS of V1.0, V2.x and/or V3.x

Note: Not all authors contributed to all versions or to this version. The company name reflects the company at the point of time of

the publication and might differ from the company name in previous versions.

Sebastian Bader, SAP SE

Erich Barnstedt, Microsoft Deutschland GmbH

Dr. Heinz Bedenbender, VDI/VDE-Gesellschaft für Mess- und Automatisierungstechnik (GMA)

Bernd Berres, MPDV Mikrolab GmbH

Meik Billmann, IDTA e.V.

Dr. Birgit Boss, Robert Bosch GmbH

Nico Braunisch, TU Dresden

Dr. André Braunmandl, BSI

Erich Clauer, SAP SE

Professor Dr. Christian Diedrich, ifak - Institut f. Automation und Kommunikation e.V. Magdeburg

Björn Flubacher, BSI

Wolfgang Fritsche, IABG mbH

Kai Garrels, ABB STOTZ-KONTAKT GmbH

Dr. Andreas Graf Gatterburg, Hilscher Gesellschaft für Systemautomation mbH

Martin Hankel, Bosch Rexroth AG

Sebastian Heppner, RWTH Aachen

Oliver Hillermeier, SAP SE

Dr. Michael Hoffmeister, Festo AG & Co. KG

Dr. Lutz Jänicke, PHOENIX CONTACT GmbH & Co. KG

Michael Jochem, Robert Bosch GmbH

Tobias Klausmann, Lenze SE SE

Alexander Köpke, Microsoft Deutschland GmbH

Yevgen Kogan, KUKA Deutschland GmbH

Dr. Heiko Koziolek, ABB AG

Florian Krebs, Deutsches Zentrum für Luft- und Raumfahrt e.V.

Walter Kuhlbusch, Festo SE & Co. KG

Dr. Christoph Legat, Hekuma GmbH

Professor Dr. Arndt Lüder, Otto-von-Guericke Universität

Dr. Wolfgang Mahnke, ascolab GmbH

Dr. Somayeh Malakuti, ABB AG

➔ Continued next page

ANNEX | 233

AUTHORS of Version 1.0, 2.x and/or 3.x - continued

Dr. Marco Mendes, Schneider Electric Automation GmbH

Dr. Torben Miny, RWTH Aachen

Dr. Jörg Neidig, SIEMENS AG

Andreas Neubacher, Deutsche Telekom

Andreas Orzelski, PHOENIX CONTACT GmbH & Co. KG

Florian Pethig, Fraunhofer IOSB-INA

Stefan Pollmeier, ESR Pollmeier GmbH Servo-Antriebstechnik

Magnus Redeker, Fraunhofer IOSB-INA

Marko Ristin, ZHAW Zürich

Manuel Sauer, SAP SE

Volker Schaber, SICK AG

Daniel Schel, Fraunhofer IPA

Otto Schell, Deutschsprachige SAP Anwender Gruppe e.V. (DSAG)

Marc Schier, Microsoft Deutschland GmbH

Dr. Miriam Schleipen, EKS InTec GmbH

Dr. Michael Schmitt, SAP SE

Tizian Schröder, Otto-von-Guericke-Universität Magdeburg

Guido Stephan, SIEMENS AG

Dr. Ljilijana Stojanovic, Fraunhofer IOSB

Andreas Teuscher, SICK AG

André Uhl, Schneider Electric Automation GmbH

Dr. Thomas Usländer, Fraunhofer IOSB

Jens Vialkowitsch, Robert Bosch GmbH

Friedrich Vollmar

Thomas Walloschke, Industrie KI GmbH

Bernd Waser, Murrelektronik GmbH

Jörg Wende, IBM Deutschland GmbH

Mathias Wiegand, Festo AG & Co. KG

Nico Wilhelm, ZF Friedrichshafen AG

Constantin Ziesche, Bosch Rexroth AG

234 | PART 1

This working paper has been elaborated in the Joint Working Subgroup “Asset Administration Shell” of the

Working Group on “Reference Architectures, Standards and Norms “ of Plattform Industrie 4.0, the Working

Group “Open Technology” of the Industrial Digital Twin Association (IDTA) and the working group “Models

and Standards” of the ZVEI in cooperation with the Working Groups “Security of networked Systems”

(Plattform Industrie 4.0) and “Security” (ZVEI). The OPC UA Mapping has been elaborated in the joint

working group “I4AAS” of the OPC Foundation, ZVEI, VDMA and the Plattform Industrie 4.0. The

AutomationML Mapping has been elaborated in the joint working group of AutomationML e.V. and the

Plattform Industrie 4.0.

ANNEX | 235

www.plattform-i40.de

	1 Preamble
	1.1 Editorial Notes
	1.2 Scope of this Document
	1.3 Structure of the Document
	1.4 Principles of the Work

	2 Terms, Definitions and Abbreviations
	2.1 Terms & Definitions
	2.2 Abbreviations used in Document
	2.3 Abbreviations of Metamodel

	3 Introduction
	4 Basic Concepts and Leading Picture
	4.1 Basic Concepts
	4.2 Leading Picture

	5 The Metamodel of the Administration Shell
	5.1 Introduction
	5.2 Types and Instances
	5.2.1 Life Cycle with Asset Types and Asset Instances
	5.2.2 Example for Asset Types and Asset Instances
	5.2.3 Asset Administration Shell Types and Instances

	5.3 Composite I4.0 Components
	5.4 Identification of Elements
	5.4.1 Overview
	5.4.2 What Identifiers Exist?
	5.4.3 Identifiers for Assets and Administration Shells
	5.4.4 Which Identifiers to use for which Elements
	5.4.5 How are New Identifiers Created?
	5.4.6 Matching Strategies for Semantic Identifiers
	5.4.7 Best Practice for Creating URI Identifiers
	5.4.8 Creating a Submodel Instance based on an Existing Submodel Template
	5.4.9 Can New or Proprietary Submodels be Formed?
	5.4.10 Usage of Short ID for Identifiable Elements

	5.5 Events
	5.5.1 Overview
	5.5.2 Brief Use Cases for Events Used in Asset Administration Shells
	5.5.3 Input and Output Directions of Events
	5.5.4 Types of Events

	5.6 Overview Metamodel of the Administration Shell
	5.7 Metamodel Specification Details: Designators (normative)
	5.7.1 Introduction
	5.7.2 Common Attributes
	5.7.2.1 Extensions (HasExtensions)
	5.7.2.2 Referable Attributes
	5.7.2.3 Identifiable Attributes
	5.7.2.4 Template or Instance of Model Element Attributes (HasKind)
	5.7.2.5 Administrative Information Attributes
	5.7.2.6 Semantic References Attributes (HasSemantics)
	5.7.2.7 Qualifiable Attributes
	5.7.2.8 Qualifier Attributes
	5.7.2.9 Used Templates for Data Specification Attributes (HasDataSpecification)

	5.7.3 Asset Administration Shell Attributes
	5.7.4 Asset Information Attributes
	5.7.5 Submodel Attributes
	5.7.6 Submodel Element Attributes
	5.7.7 Overview of Submodel Element Types
	5.7.7.1 Annotated Relationship Element Attributes
	5.7.7.2 Basic Event Element Attributes
	5.7.7.3 Blob Attributes
	5.7.7.4 Capability Attributes
	5.7.7.5 Data Element and Overview of Data Element Types
	5.7.7.6 Entity Attributes
	5.7.7.7 Event Attributes
	5.7.7.8 File Attributes
	5.7.7.9 Multi Language Property Attributes
	5.7.7.10 Operation Attributes
	5.7.7.11 Property Attributes
	5.7.7.12 Range Attributes
	5.7.7.13 Reference Element Attributes
	5.7.7.14 Relationship Element Attributes
	5.7.7.15 Submodel Element Collection Attributes
	5.7.7.16 Submodel Element List Attributes

	5.7.8 Concept Description Attributes
	5.7.9 Environment
	5.7.10 Referencing in Asset Administration Shells
	5.7.10.1 Overview
	5.7.10.2 Reference Attributes
	5.7.10.3 Key Attributes
	5.7.10.4 Constraints
	5.7.10.5 Matching Algorithm for References

	5.7.11 Templates, Inheritance, Qualifiers and Categories
	5.7.12 Primitive and Simple Data Types
	5.7.12.1 Predefined Simple Data Types
	5.7.12.2 Primitive Data Types
	5.7.12.3 Enumeration for Submodel Element Value Types

	5.7.13 Cross Constraints and Invariants
	5.7.13.1 Introduction
	5.7.13.2 Constraints for Referables and Identifiables
	5.7.13.3 Constraints for Qualifiers
	5.7.13.4 Constraints for Extensions
	5.7.13.5 Constraints for Asset Related Information
	5.7.13.6 Constraints for Types

	6 Predefined Data Specification Templates
	6.1 General
	6.2 Data Specification Template Specification Details: Designators
	6.2.1.1 Data Specification Template Attributes

	6.3 Predefined Template for IEC61360 Properties, Value Lists and Values
	6.3.1 General
	6.3.2 Overview of Data Specification Template IEC61360
	6.3.3 Data Specification IEC61360 Template Specification Details: Designators
	6.3.3.1 Data Specification IEC61360 Template Attributes
	6.3.3.2 Identifier for DataSpecificationIEC61360

	6.3.4 Category of Concept Descriptions

	6.4 Predefined Templates for Unit Concept Descriptions
	6.4.1 General
	6.4.2 Data Specification Physical Unit Template Specification Details: Designators
	6.4.2.1 Data Specification Template Physical Unit Attributes
	6.4.2.2 Identifier for Data Specification Physical Unit

	6.5 Cross Constraints and Invariants for Predefined Data Specifications
	6.5.1 General
	6.5.2 Constraints for DataSpecificationIEC61360
	6.5.3 Constraints for DataSpecificationPhysicalUnit

	7 The Metamodel of the Asset Administration Shell w.r.t. Security
	7.1 General
	7.2 Passing Access Permissions
	7.3 Overview Metamodel of Administration Shell w.r.t. Security
	7.4 Metamodel Specification Details: Designators
	7.4.1 Introduction
	7.4.2 Security Attributes
	7.4.3 Access Control Policy Point Attributes
	7.4.4 Access Control Attributes
	7.4.5 Access Permission Rule Attributes
	7.4.6 Formula Attributes
	7.4.7 Cross Constraints and Invariants

	8 Package File Format for the Asset Administration Shell (AASX)
	8.1 General
	8.2 Basic Concepts of the Open Packaging Conventions
	8.3 Conventions for the Asset Administration Shell Package File Format (AASX)
	8.4 ECMA-376 Relationships
	8.5 File Name Conventions
	8.6 Digital Signatures
	8.7 Encryption

	9 Mappings to Data Formats to Share I4.0-Compliant Information
	9.1 General
	9.2 General Rules
	9.2.1 Introduction
	9.2.2 Encoding
	9.2.3 Serialization of Values of Type “Reference”
	9.2.4 Semantic Identifiers for Metamodel and Data Specifications
	9.2.5 Embedded Data Specifications

	9.3 XML
	9.4 JSON
	9.5 RDF
	9.6 AutomationML
	9.7 OPC UA

	10 Filtering of Information in Export and Import
	11 Tools for the Asset Administration Shell
	11.1 Open Source Tools

	12 Summary and Outlook
	Annex A. Concepts of the Administration Shell
	i. General
	ii. Relevant Sources and Documents
	iii. Basic Concepts for Industrie 4.0
	iv. The Concept of Properties
	v. The Concept of Submodels
	vi. Basic Structure of the Asset Administration Shell
	vii. Requirements

	Annex B. AASX Package File Format – Background Information
	i. Selection of the Reference Format for the Asset Administration Shell Package Format

	Annex C. Templates for UML Tables
	i. General
	ii. Template for Classes
	iii. Template for enumerations
	iv. Template for Primitives
	v. Handling of Constraints

	Annex D. Legend for UML Modelling
	i. OMG UML General
	ii. Notes to Graphical Representation

	Annex E. Metamodel UML with Inherited Attributes
	Annex F. Metamodel Changes
	i. General
	ii. Changes V3.0RC02 vs. V2.0.1
	a. Metamodel Changes V3.0RC02 vs. V2.0.1 w/o Security Part
	b. Metamodel Changes V3.0RC02 vs. V2.0.1 – Data Specification IEC61360
	c. Metamodel Changes V3.0RC02 vs. V2.0.1 – Security Part

	iii. Changes V3.0RC02 vs. V3.0RC01
	a. Metamodel Changes V3.0RC02 vs. V3.0RC01 w/o Security Part
	b. Metamodel Changes V3.0RC02 vs. V3.0RC01 – Data Specification IEC61360
	c. Metamodel Changes V3.0RC02 vs. V3.0RC01 – Security Part

	iv. Changes V3.0RC01 vs. V2.0.1
	a. Metamodel Changes V3.0RC01 w/o Security Part
	b. Metamodel Changes V3.0RC01 – Security Part

	v. Changes V2.0.1 vs. V2.0
	a. Metamodel Changes V2.0.1 w/o Security Part
	b. Metamodel Changes V2.0.1 – Security Part

	vi. Changes V2.0 vs. V1.0
	a. Metamodel Changes V2.0 w/o Security Part
	b. Metamodel Changes V2.0 – Security Part

	Annex G. Bibliography

